运行代码时,我面临以下错误。
错误-列标签“ Avg_Threat_Score”不是唯一的。
我正在创建数据透视表,并希望将值从高到低排序。
pt = df.pivot_table(index = 'User Name',values = ['Threat Score', 'Score'],
aggfunc = {
'Threat Score': np.mean,
'Score' :[np.mean, lambda x: len(x.dropna())]
},
margins = False)
new_col =['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
pt.columns = [new_col]
#befor this code is working, after that now working
df = df.reindex(pt.sort_values
(by = 'Avg_Threat_Score',ascending=False).index)
需要对“ Avg_Threat_Score”列的值进行高低排序
最佳答案
您需要按列表(而不是嵌套列表)传递新的列名称,因为熊猫会在一个级别上创建MultiIndex
。
new_col =['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
pt.columns = [new_col]
是一样的:
pt.columns = [['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']]
ValueError:列标签“ Avg_Threat_Score”不是唯一的。
对于多索引,标签必须是一个元组,其元素与每个级别相对应。
因此使用:
pt.columns = ['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
样品:
df = pd.DataFrame({
'User Name':list('ababaa'),
'Threat Score':[4,5,4,np.nan,5,4],
'Score':[np.nan,8,9,4,2,np.nan],
'D':[1,3,5,7,1,0]})
pt = (df.pivot_table(index = 'User Name',values = ['Threat Score', 'Score'],
aggfunc = {
'Threat Score': np.mean,
'Score' :[np.mean, lambda x: len(x.dropna())]
},
margins = False))
pt.columns = ['User Name Count', 'AVG_TH_Score', 'Avg_Threat_Score']
print (pt)
User Name Count AVG_TH_Score Avg_Threat_Score
User Name
a 2.0 5.5 4.25
b 2.0 6.0 5.00
然后对于从
Avg_Threat_Score
排序的排序,请对列Categorical
使用排序的User Name
,因此最后一个sort_values
工作:names = pt.sort_values(by = 'Avg_Threat_Score',ascending=False).index
print (names)
#Index(['b', 'a'], dtype='object', name='User Name')
df['User Name'] = pd.CategoricalIndex(df['User Name'], categories=names, ordered=True)
df = df.sort_values('User Name')
print (df)
User Name Threat Score Score D
1 b 5.0 8.0 3
3 b NaN 4.0 7
0 a 4.0 NaN 1
2 a 4.0 9.0 5
4 a 5.0 2.0 1
5 a 4.0 NaN 0
关于python - 如何解决“列标签'Avg_Threat_Score'不是唯一的”。起诉 Pandas ,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/56312312/