我在玩这段代码
main_var.go
package main
func main() {
const size = 1000000
slice := make([]SomeStruct, size)
for _, s := range slice { // line 7
_ = s
}
}
type_small.go
package main
type SomeStruct struct {
ID0 int64
ID1 int64
ID2 int64
ID3 int64
ID4 int64
ID5 int64
ID6 int64
ID7 int64
ID8 int64
}
我注意到,如果我向该结构添加另一个64位int64
ID9
(总计10 * 8字节= 80字节),则for循环会变慢。如果我比较程序集,它会添加指令以复制元素
// with 9 int64 (72 bytes)
0x001d 00029 (main_var.go:6) LEAQ type."".SomeStruct(SB), AX
0x0024 00036 (main_var.go:6) MOVQ AX, (SP)
0x0028 00040 (main_var.go:6) MOVQ $1000000, 8(SP)
0x0031 00049 (main_var.go:6) MOVQ $1000000, 16(SP)
0x003a 00058 (main_var.go:6) CALL runtime.makeslice(SB)
0x003f 00063 (main_var.go:6) XORL AX, AX
0x0041 00065 (main_var.go:7) INCQ AX
0x0044 00068 (main_var.go:7) CMPQ AX, $1000000
0x004a 00074 (main_var.go:7) JLT 65
0x004c 00076 (main_var.go:7) MOVQ 32(SP), BP
0x0051 00081 (main_var.go:7) ADDQ $40, SP
0x0055 00085 (main_var.go:7) RET
0x0056 00086 (main_var.go:7) NOP
0x0056 00086 (main_var.go:3) CALL runtime.morestack_noctxt(SB)
0x005b 00091 (main_var.go:3) JMP 0
// with 10 int64 (80 bytes), it added DUFFCOPY instruction
0x001d 00029 (main_var.go:6) LEAQ type."".SomeStruct(SB), AX
0x0024 00036 (main_var.go:6) MOVQ AX, (SP)
0x0028 00040 (main_var.go:6) MOVQ $1000000, 8(SP)
0x0031 00049 (main_var.go:6) MOVQ $1000000, 16(SP)
0x003a 00058 (main_var.go:6) CALL runtime.makeslice(SB)
0x003f 00063 (main_var.go:6) MOVQ 24(SP), AX
0x0044 00068 (main_var.go:6) XORL CX, CX
0x0046 00070 (main_var.go:7) JMP 76
0x0048 00072 (main_var.go:7) ADDQ $80, AX
0x004c 00076 (main_var.go:7) LEAQ ""..autotmp_7+32(SP), DI
0x0051 00081 (main_var.go:7) MOVQ AX, SI
0x0054 00084 (main_var.go:7) DUFFCOPY $826 # <-- copy the element
0x0067 00103 (main_var.go:7) INCQ CX
0x006a 00106 (main_var.go:7) CMPQ CX, $1000000
0x0071 00113 (main_var.go:7) JLT 72
0x0073 00115 (main_var.go:7) MOVQ 112(SP), BP
0x0078 00120 (main_var.go:7) ADDQ $120, SP
0x007c 00124 (main_var.go:7) RET
0x007d 00125 (main_var.go:7) NOP
0x007d 00125 (main_var.go:3) CALL runtime.morestack_noctxt(SB)
0x0082 00130 (main_var.go:3) JMP 0
我想知道为什么即使在两种情况下都未使用slice元素的情况下,较大结构(> 80字节)的行为却不同。
最佳答案
我发现这是由于SSA优化。
在lower
传递期间更明确。此过程将“中间表示”更改为机器特定的组件。
在writebarrier
(在lower
之前1步)处,两种结构尺寸的指令仍然相同。
v22 (7) = Phi <*SomeStruct> v14 v45
v28 (7) = Phi <int> v16 v37
v23 (7) = Phi <mem> v12 v27
v37 (+7) = Add64 <int> v28 v36
v39 (7) = Less64 <bool> v37 v8
v25 (7) = VarDef <mem> {.autotmp_7} v23
v26 (7) = LocalAddr <*SomeStruct> {.autotmp_7} v2 v25
v27 (+7) = Move <mem> {SomeStruct} [72] v26 v22 v25 # <-- copy operation
如您所见,v27上有
Move
操作。但是,在
lower
通过之后,指令有所不同。带有9个int64(72字节)的
v22 (7) = Phi <*SomeStruct> v14 v45
v28 (7) = Phi <int> v16 v37
v23 (7) = Phi <mem> v12 v27
v37 (+7) = ADDQconst <int> [1] v28
v25 (7) = VarDef <mem> {.autotmp_7} v23
v26 (7) = LEAQ <*SomeStruct> {.autotmp_7} v2
v44 (7) = CMPQconst <flags> [1000000] v37
v32 (+7) = LEAQ <*SomeStruct> {.autotmp_7} [8] v2
v31 (+7) = ADDQconst <*SomeStruct> [8] v22
v29 (+7) = MOVQload <uint64> v22 v25
v24 (+7) = LEAQ <*SomeStruct> {.autotmp_7} [40] v2
v15 (+7) = ADDQconst <*SomeStruct> [40] v22
v46 (+7) = LEAQ <*SomeStruct> {.autotmp_7} [56] v2
v35 (+7) = ADDQconst <*SomeStruct> [56] v22
v21 (+7) = LEAQ <*SomeStruct> {.autotmp_7} [24] v2
v17 (+7) = ADDQconst <*SomeStruct> [24] v22
v39 (7) = SETL <bool> v44
v42 (7) = TESTB <flags> v39 v39
v30 (+7) = MOVQstore <mem> {.autotmp_7} v2 v29 v25
v41 (+7) = MOVOload <int128> [8] v22 v30
v20 (+7) = MOVOstore <mem> {.autotmp_7} [8] v2 v41 v30
v34 (+7) = MOVOload <int128> [24] v22 v20
v19 (+7) = MOVOstore <mem> {.autotmp_7} [24] v2 v34 v20
v33 (+7) = MOVOload <int128> [40] v22 v19
v38 (+7) = MOVOstore <mem> {.autotmp_7} [40] v2 v33 v19
v47 (+7) = MOVOload <int128> [56] v22 v38
v27 (+7) = MOVOstore <mem> {.autotmp_7} [56] v2 v47 v38
带有10个int64(80字节)的,它使用DUFFCOPY设备优化MOVE
v22 (7) = Phi <*SomeStruct> v14 v45
v28 (7) = Phi <int> v16 v37
v23 (7) = Phi <mem> v12 v27
v37 (+7) = ADDQconst <int> [1] v28
v25 (7) = VarDef <mem> {.autotmp_7} v23
v26 (7) = LEAQ <*SomeStruct> {.autotmp_7} v2
v44 (7) = CMPQconst <flags> [1000000] v37
v32 (+7) = LEAQ <*SomeStruct> {.autotmp_7} [8] v2
v31 (+7) = ADDQconst <*SomeStruct> [8] v22
v29 (+7) = MOVQload <uint64> v22 v25
v39 (7) = SETL <bool> v44
v42 (7) = TESTB <flags> v39 v39
v30 (+7) = MOVQstore <mem> {.autotmp_7} v2 v29 v25
v27 (+7) = DUFFCOPY <mem> [826] v32 v31 v30 # <---
此优化是由于rule on rewriteAMD64.go
match: (Move [s] dst src mem)
cond: s > 64 && s <= 16*64 && s%16 == 0 && !config.noDuffDevice
result: (DUFFCOPY [14*(64-s/16)] dst src mem)
在稍后阶段(
elim unread autos
),SSA优化可以检测到临时变量autotmp_7
没有被使用并且可以将其删除。对于带有DUFFCOPY的较大结构,情况并非如此我写了更多细节here