我正在尝试使用自定义目标函数实现 lightGBM 分类器。我的目标数据有四类,我的数据被分成 12 个观察值的自然组。

自定义目标函数实现两件事:

  • 预测的模型输出必须是概率性的,并且每次观察的概率之和必须为 1。这也称为 softmax 目标函数,实现起来相对简单
  • 每个类别的概率在每个组中的总和必须为 1。这已在二项式分类空间中实现,称为条件 logit 模型。

  • 总之,对于每组(在我的情况下为 4 个观察值),每列和每行的概率总和应为 1。我已经编写了一个稍微有点hacky的函数来实现这一点,但是当我尝试在python的xgb框架内运行我的自定义目标函数时,我收到以下错误:



    我的完整代码如下:
    import lightgbm as lgb
    import numpy as np
    import pandas as pd
    
    def standardiseProbs(preds, groupSize, eta = 0.1, maxIter = 100):
    
        # add groupId to preds dataframe
        n = preds.shape[0]
        if n % groupSize != 0:
            print('The selected group size paramter is not compatible with the data')
        preds['groupId'] = np.repeat(np.arange(0, int(n/groupSize)), groupSize)
    
        #initialise variables
        error = 10000
        i = 0
    
        # perform loop while error exceeds set threshold (subject to maxIter)
        while error > eta and i<maxIter:
            i += 1
            # get sum of probabilities by game
            byGroup = preds.groupby('groupId')[0, 1, 2, 3].sum().reset_index()
            byGroup.columns = ['groupId', '0G', '1G', '2G', '3G']
    
            if '3G' in list(preds.columns):
                preds = preds.drop(['3G', '2G', '1G', '0G'], axis=1)
            preds = preds.merge(byGroup, how='inner', on='groupId')
    
            # adjust probs to be consistent across a game
            for v in [1, 2, 3]:
                preds[v] = preds[v] / preds[str(v) + 'G']
    
            preds[0] = (groupSize-3)* (preds[0] / preds['0G'])
    
            # sum probabilities by player
            preds['rowSum'] = preds[3] + preds[2] + preds[1] + preds[0]
    
            # adjust probs to be consistent across a player
            for v in [0, 1, 2, 3]:
                preds[v] = preds[v] / preds['rowSum']
    
            # get sum of probabilities by game
            byGroup = preds.groupby('groupId')[0, 1, 2, 3].sum().reset_index()
            byGroup.columns = ['groupId', '0G', '1G', '2G', '3G']
    
            # calc error
            errMat = abs(np.subtract(byGroup[['0G', '1G', '2G', '3G']].values, np.array([(groupSize-3), 1, 1, 1])))
            error = sum(sum(errMat))
    
        preds = preds[['groupId', 0, 1, 2, 3]]
        return preds
    
    def condObjective(preds, train):
        labels = train.get_label()
        preds = pd.DataFrame(np.reshape(preds, (int(preds.shape[0]/4), 4), order='C'), columns=[0,1,2,3])
        n = preds.shape[0]
        yy = np.zeros((n, 4))
        yy[np.arange(n), labels] = 1
        preds['matchId'] = np.repeat(np.arange(0, int(n/4)), 4)
        preds = preds[['matchId', 0, 1, 2, 3]]
        preds = standardiseProbs(preds, groupSize = 4, eta=0.001, maxIter=500)
        preds = preds[[0, 1, 2, 3]].values
        grad = (preds - yy).flatten()
        hess = (preds * (1. - preds)).flatten()
        return grad, hess
    
    def mlogloss(preds, train):
        labels = train.get_label()
        preds = pd.DataFrame(np.reshape(preds, (int(preds.shape[0]/4), 4), order='C'), columns=[0,1,2,3])
        n = preds.shape[0]
        yy = np.zeros((n, 4))
        yy[np.arange(n), labels] = 1
        preds['matchId'] = np.repeat(np.arange(0, int(n/4)), 4)
        preds = preds[['matchId', 0, 1, 2, 3]]
        preds = standardiseProbs(preds, groupSize = 4, eta=0.001, maxIter=500)
        preds = preds[[0, 1, 2, 3]].values
        loss = -(np.sum(yy*np.log(preds)+(1-yy)*np.log(1-preds))/n)
        return loss
    
    n, k = 880, 5
    
    xtrain = np.random.rand(n, k)
    ytrain = np.random.randint(low=0, high=2, size=n)
    ltrain = lgb.Dataset(xtrain, label=ytrain)
    xtest = np.random.rand(int(n/2), k)
    ytest = np.random.randint(low=0, high=2, size=int(n/2))
    ltest = lgb.Dataset(xtrain, label=ytrain)
    
    lgbmParams = {'boosting_type': 'gbdt',
                  'num_leaves': 250,
                  'max_depth': 3,
                  'min_data_in_leaf': 10,
                  'min_gain_to_split': 0.75,
                  'learning_rate': 0.01,
                  'subsample_for_bin': 120100,
                  'min_child_samples': 70,
                  'reg_alpha': 1.45,
                  'reg_lambda': 2.5,
                  'feature_fraction': 0.45,
                  'bagging_fraction': 0.55,
                  'is_unbalance': True,
                  'objective': 'multiclass',
                  'num_class': 4,
                  'metric': 'multi_logloss',
                  'verbose': 1}
    
    lgbmModel = lgb.train(lgbmParams, ltrain, valid_sets=ltest,fobj=condObjective, feval=mlogloss, num_boost_round=5000, early_stopping_rounds=100, verbose_eval=50)
    

    假设没有更好的方法来强制我的预测符合我对其施加的限制条件,我需要做什么才能使自定义目标起作用?

    最佳答案

    这个错误的问题

        -> 2380                 eval_name, val, is_higher_better = feval_ret // this is the return of mlogloss
           2381                 ret.append((data_name, eval_name, val, is_higher_better))
           2382         return ret
    TypeError: 'numpy.float64' object is not iterable
    

    来自函数 mlogloss() 。因为您将它用作 eval 函数 feval=mlogloss 它应该返回 3 件事:它的名称、值和一个 bool 值,指示是否值越高越好。
    def mlogloss(...):
    ...
    return "my_loss_name", loss_value, False
    

    关于python - python中lightGBM的自定义多类对数损失函数返回错误,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/58092876/

    10-12 17:39
    查看更多