我试图用python实现梯度下降算法,下面是我的代码,
def grad_des(xvalues, yvalues, R=0.01, epsilon = 0.0001, MaxIterations=1000):
xvalues= np.array(xvalues)
yvalues = np.array(yvalues)
length = len(xvalues)
alpha = 1
beta = 1
converged = False
i=0
cost = sum([(alpha + beta*xvalues[i] - yvalues[i])**2 for i in range(length)]) / (2 * length)
start_time = time.time()
while not converged:
alpha_deriv = sum([(alpha + beta*xvalues[i] - yvalues[i]) for i in range(length)]) / (length)
beta_deriv = sum([(alpha + beta*xvalues[i] - yvalues[i])*xvalues[i] for i in range(length)]) / (length)
alpha = alpha - R * alpha_deriv
beta = beta - R * beta_deriv
new_cost = sum( [ (alpha + beta*xvalues[i] - yvalues[i])**2 for i in range(length)] ) / (2*length)
if abs(cost - new_cost) <= epsilon:
print 'Converged'
print 'Number of Iterations:', i
converged = True
cost = new_cost
i = i + 1
if i == MaxIterations:
print 'Maximum Iterations Exceeded'
converged = True
print "Time taken: " + str(round(time.time() - start_time,2)) + " seconds"
return alpha, beta
这个代码运行良好。但问题是,大约需要25秒,大约600次迭代。我觉得这不够有效,在计算之前我试着把它转换成一个数组这确实把时间从300秒缩短到了25秒。但我还是觉得可以减少。有谁能帮我改进这个算法吗?
谢谢
最佳答案
我能看到的最低的悬挂水果是矢量化的你有很多列表理解;它们比for循环快,但是没有正确使用numpy数组。
def grad_des_vec(xvalues, yvalues, R=0.01, epsilon=0.0001, MaxIterations=1000):
xvalues = np.array(xvalues)
yvalues = np.array(yvalues)
length = len(xvalues)
alpha = 1
beta = 1
converged = False
i = 0
cost = np.sum((alpha + beta * xvalues - yvalues)**2) / (2 * length)
start_time = time.time()
while not converged:
alpha_deriv = np.sum(alpha + beta * xvalues - yvalues) / length
beta_deriv = np.sum(
(alpha + beta * xvalues - yvalues) * xvalues) / length
alpha = alpha - R * alpha_deriv
beta = beta - R * beta_deriv
new_cost = np.sum((alpha + beta * xvalues - yvalues)**2) / (2 * length)
if abs(cost - new_cost) <= epsilon:
print('Converged')
print('Number of Iterations:', i)
converged = True
cost = new_cost
i = i + 1
if i == MaxIterations:
print('Maximum Iterations Exceeded')
converged = True
print("Time taken: " + str(round(time.time() - start_time, 2)) + " seconds")
return alpha, beta
供比较
In[47]: grad_des(xval, yval)
Converged
Number of Iterations: 198
Time taken: 0.66 seconds
Out[47]:
(0.28264882215511067, 0.53289263416071131)
In [48]: grad_des_vec(xval, yval)
Converged
Number of Iterations: 198
Time taken: 0.03 seconds
Out[48]:
(0.28264882215511078, 0.5328926341607112)
这大约是20倍的加速(xval和yval都是1024个元素数组)。