我想创建一个2d numpy数组,其中每个元素都是其索引的元组。
示例(4x5):
array([[[0, 0],
[0, 1],
[0, 2],
[0, 3],
[0, 4]],
[[1, 0],
[1, 1],
[1, 2],
[1, 3],
[1, 4]],
[[2, 0],
[2, 1],
[2, 2],
[2, 3],
[2, 4]],
[[3, 0],
[3, 1],
[3, 2],
[3, 3],
[3, 4]]])
我将创建一个python
list
并理解以下列表:[[(y,x) for x in range(width)] for y in range(height)]
有没有更快的方法来达到同样的效果呢?
最佳答案
下面是一个基于初始化的方法-
def create_grid(m,n):
out = np.empty((m,n,2),dtype=int) #Improvement suggested by @AndrasDeak
out[...,0] = np.arange(m)[:,None]
out[...,1] = np.arange(n)
return out
样本运行-
In [47]: create_grid(4,5)
Out[47]:
array([[[0, 0],
[0, 1],
[0, 2],
[0, 3],
[0, 4]],
[[1, 0],
[1, 1],
[1, 2],
[1, 3],
[1, 4]],
[[2, 0],
[2, 1],
[2, 2],
[2, 3],
[2, 4]],
[[3, 0],
[3, 1],
[3, 2],
[3, 3],
[3, 4]]])
到目前为止发布在
(4,5)
网格和更大尺寸上的所有方法的运行时测试-In [111]: %timeit np.moveaxis(np.indices((4,5)), 0, -1)
...: %timeit np.mgrid[:4, :5].swapaxes(2, 0).swapaxes(0, 1)
...: %timeit np.mgrid[:4,:5].transpose(1,2,0)
...: %timeit create_grid(4,5)
...:
100000 loops, best of 3: 11.1 µs per loop
100000 loops, best of 3: 17.1 µs per loop
100000 loops, best of 3: 17 µs per loop
100000 loops, best of 3: 2.51 µs per loop
In [113]: %timeit np.moveaxis(np.indices((400,500)), 0, -1)
...: %timeit np.mgrid[:400, :500].swapaxes(2, 0).swapaxes(0, 1)
...: %timeit np.mgrid[:400,:500].transpose(1,2,0)
...: %timeit create_grid(400,500)
...:
1000 loops, best of 3: 351 µs per loop
1000 loops, best of 3: 1.01 ms per loop
1000 loops, best of 3: 1.03 ms per loop
10000 loops, best of 3: 190 µs per loop