我正在从convnetjs切换到tensorflow并试图获得阅读图像和使用tensorflow训练cnn的基础知识。
我在两个文件夹中有一堆图像160 * 120 * 1:train/go和train/no,所以我使用两个类。
我以某种方式可以理解tf.train.slice_input_producer和sess.run(train_step之间的连接方式。
我的代码:
import tensorflow as tf
def read_my_list( minId, maxId ):
""" create list with train/no and train/go from 1 to maxid
max maxId = 50000
"""
filenames = []
labels = []
for num in range( minId, maxId ):
filenames.append( "/media/boss/tensor/train/go/" + str( num ) + ".jpg" )
labels.append( int( 1 ) )
filenames.append( "/media/boss/tensor/train/no/" + no_go_name( num ) + ".jpg" )
labels.append( int( 0 ) )
# return list with all filenames
return filenames, labels
def no_go_name( id ):
# create string where id = 5 becomes 00005
ret = str( id )
while ( len( ret ) < 5 ):
ret = "0" + ret;
return ret;
def read_images_from_disk(input_queue):
"""Consumes a single filename and label as a ' '-delimited string.
Args:
filename_and_label_tensor: A scalar string tensor.
Returns:
Two tensors: the decoded image, and the string label.
"""
label = input_queue[1]
print( "read file " )
file_contents = tf.read_file(input_queue[0])
example = tf.image.decode_jpeg(file_contents, channels=1)
# do i need to set shape??????????
example.set_shape([160, 120, 1])
print( "file read " )
return example, label
# some stuff to create a cnn etc
x = tf.placeholder(tf.float32, [None, 19200])
W = tf.Variable(tf.zeros([19200, 2]))
b = tf.Variable(tf.zeros([2]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 2])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
# get filelist and labels
image_list, label_list = read_my_list( 1, 10 )
# conver to tensors for input_queue
images = tf.convert_to_tensor(image_list, dtype=tf.string)
labels = tf.convert_to_tensor(label_list, dtype=tf.int32)
# Makes an input queue
input_queue = tf.train.slice_input_producer([images, labels],
num_epochs=10,
shuffle=True)
image, label = read_images_from_disk(input_queue)
for i in range(100):
print( i )
image_batch, label_batch = tf.train.batch([image, label],
batch_size=2)
#gives error see below
sess.run(train_step, feed_dict={x: image_batch, y_: label_batch})
# test accuracy, unsure if something is wrong here
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
batch_xs, batch_ys = tf.train.batch([image, label],
batch_size=10)
print(sess.run(accuracy, feed_dict={x: batch_xs, y_: batch_ys}))
下面的行给出了一个错误:
sess.run(train_step, feed_dict={x: image_batch, y_: label_batch})
这是错误:
Traceback (most recent call last):
File "detectGoNo.py", line 95, in <module>
sess.run(train_step, feed_dict={x: image_batch, y_: label_batch})
File "/home/boss/anaconda2/envs/tensor2/lib/python2.7/site-
packages/tensorflow/python/client/session.py", line 340, in run
run_metadata_ptr)
File "/home/boss/anaconda2/envs/tensor2/lib/python2.7/site-
packages/tensorflow/python/client/session.py", line 545, in _run
raise TypeError('The value of a feed cannot be a tf.Tensor object. '
TypeError: The value of a feed cannot be a tf.Tensor object. Acceptable
feed values include Python scalars, strings, lists, or numpy ndarrays.
更新02-06-2016
我从nessuno,培训和验证中获得了与该解决方案一起使用的所有功能(下面的代码)
Mrry指出,不幸的是,一条管道比较典型,这是行不通的(下面的代码)
没有给出任何错误,但计算的成本保持不变,并且验证表明我的网络没有改善。
我最好的猜测是,我将标签馈给培训师的方式或我使用one_hot函数的方式出了点问题。
验证部分似乎正在工作,当我感觉始终带有0标签精度的图像变为100%,1标签精度为0%且50/50时为50%。当然也可以相反,但是由于培训期间成本没有改变,我认为培训期间出了点问题
我知道,我现在使用的模型很简单,但是对于调试它来说已经足够好了,工作版本可以在1500张图像中达到80%的精度。
label = tf.cast( label, tf.int64 )
label = tf.one_hot( label, 2, 0, 1 )
label = tf.cast( label, tf.float32 )
我的代码:(有效)
import tensorflow as tf
import numpy as np
import math
IMAGE_WIDTH = 160
IMAGE_HEIGHT = 120
IMAGE_DEPTH = 1
IMAGE_PIXELS = IMAGE_WIDTH * IMAGE_HEIGHT
NUM_CLASSES = 2
STEPS = 50000
STEP_PRINT = 100
STEP_VALIDATE = 100
LEARN_RATE = 0.0014
DECAY_RATE = 0.4
BATCH_SIZE = 5
def read_my_list( minId, maxId, folder ):
""" create list with train/no and train/go from 1 to maxid
max maxId = 50000
"""
filenames = []
labels = []
#labels = np.zeros( ( ( maxId - minId ) * 2, 2 ) )
for num in range( minId, maxId ):
filenames.append( "/media/boss/2C260F93260F5CE8/tensor/" + folder + "/go/" + str( num ) + ".jpg" )
#labels[ ( num - minId ) * 2 ][ 1 ] = 1
labels.append( int( 1 ) )
filenames.append( "/media/boss/2C260F93260F5CE8/tensor/" + folder + "/no/" + no_go_name( num ) + ".jpg" )
#labels[ ( ( num - minId ) * 2 ) + 1 ][ 0 ] = 1
labels.append( int( 0 ) )
# return list with all filenames
print( "label: " + str( len( labels ) ) )
print( "image: " + str( len( filenames ) ) )
return filenames, labels
def no_go_name( id ):
# create string where id = 5 becomes 00005
ret = str( id )
while ( len( ret ) < 5 ):
ret = "0" + ret;
return ret;
# Create model
def conv_net(x):
img_width = IMAGE_WIDTH
img_height = IMAGE_HEIGHT
img_depth = IMAGE_DEPTH
weights = tf.Variable( tf.random_normal( [ img_width * img_height * img_depth, NUM_CLASSES ] ) )
biases = tf.Variable( tf.random_normal( [ NUM_CLASSES ] ) )
# softmax layer
out = tf.add( tf.matmul( x, weights ), biases )
return out
def read_images_from_disk(input_queue):
"""Consumes a single filename and label as a ' '-delimited string.
Args:
filename_and_label_tensor: A scalar string tensor.
Returns:
Two tensors: the decoded image, and the string label.
"""
label = input_queue[1]
print( "read file " )
file_contents = tf.read_file(input_queue[0])
example = tf.image.decode_jpeg( file_contents, channels = 1 )
example = tf.reshape( example, [ IMAGE_PIXELS ] )
example.set_shape( [ IMAGE_PIXELS ] )
example = tf.cast( example, tf.float32 )
example = tf.cast( example, tf.float32 ) * ( 1. / 255 ) - 0.5
label = tf.cast( label, tf.int64 )
label = tf.one_hot( label, 2, 0, 1 )
label = tf.cast( label, tf.float32 )
print( "file read " )
return example, label
with tf.Session() as sess:
########################################
# get filelist and labels for training
image_list, label_list = read_my_list( 501, 50000, "train" )
# create queue for training
input_queue = tf.train.slice_input_producer( [ image_list, label_list ],
num_epochs = 100,
shuffle = True )
# read files for training
image, label = read_images_from_disk( input_queue )
# `image_batch` and `label_batch` represent the "next" batch
# read from the input queue.
image_batch, label_batch = tf.train.batch( [ image, label ], batch_size = BATCH_SIZE )
# input output placeholders
x = tf.placeholder(tf.float32, [None, IMAGE_PIXELS])
y_ = tf.placeholder(tf.float32, [None, NUM_CLASSES])
# create the network
y = conv_net( x )
# loss
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( y, y_) )
learning_rate = tf.placeholder(tf.float32, shape=[])
# train step
train_step = tf.train.AdamOptimizer( 1e-3 ).minimize( cost )
########################################
# get filelist and labels for validation
image_list_test, label_list_test = read_my_list( 1, 500, "validation" )
# create queue for validation
input_queue_test = tf.train.slice_input_producer( [ image_list_test, label_list_test ],
shuffle=True )
# read files for validation
image_test, label_test = read_images_from_disk( input_queue_test )
# `image_batch_test` and `label_batch_test` represent the "next" batch
# read from the input queue test.
image_batch_test, label_batch_test = tf.train.batch( [ image_test, label_test ], batch_size=200 )
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init = tf.initialize_all_variables()
sess.run(init)
# N.B. You must run this function before `sess.run(train_step)` to
# start the input pipeline.
#tf.train.start_queue_runners(sess)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(STEPS):
# No need to feed, because `x` and `y_` are already bound to
# the next input batch.
if i % STEP_PRINT == 0:
LEARN_RATE = LEARN_RATE * DECAY_RATE
print( str( i ) + " " + str( LEARN_RATE ) )
if i % STEP_VALIDATE == 0:
imgs, lbls = sess.run([image_batch_test, label_batch_test])
print(sess.run(accuracy, feed_dict={
x: imgs,
y_: lbls}))
imgs, lbls = sess.run([image_batch, label_batch])
sess.run(train_step, feed_dict={
x: imgs,
y_: lbls})
# ,learning_rate:LEARN_RATE})
imgs, lbls = sess.run([image_batch_test, label_batch_test])
print(sess.run(accuracy, feed_dict={
x: imgs,
y_: lbls}))
coord.request_stop()
coord.join(threads)
我的代码:(不起作用)
with tf.Session() as sess:
########################################
# get filelist and labels for training
image_list, label_list = read_my_list( 501, 50000, "train" )
# create queue for training
input_queue = tf.train.slice_input_producer( [ image_list, label_list ],
num_epochs = 100,
shuffle = True )
# read files for training
image, label = read_images_from_disk( input_queue )
# `image_batch` and `label_batch` represent the "next" batch
# read from the input queue.
image_batch, label_batch = tf.train.batch( [ image, label ], batch_size = BATCH_SIZE )
x = image_batch
y_ = label_batch
# create the network
y = conv_net( x )
# loss
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( y, y_) )
# train step
train_step = tf.train.AdamOptimizer( 1e-3 ).minimize( cost )
########################################
# get filelist and labels for validation
image_list_test, label_list_test = read_my_list( 1, 500, "validation" )
# create queue for validation
input_queue_test = tf.train.slice_input_producer( [ image_list_test, label_list_test ],
shuffle=True )
# read files for validation
image_test, label_test = read_images_from_disk( input_queue_test )
# `image_batch_test` and `label_batch_test` represent the "next" batch
# read from the input queue test.
image_batch_test, label_batch_test = tf.train.batch( [ image_test, label_test ], batch_size=200 )
xval = image_batch_test
yval_ = label_batch_test
# network for validation
yval = conv_net( xval )
# validate network
correct_prediction = tf.equal( tf.argmax( yval, 1 ), tf.argmax( yval_, 1 ) )
# calculate accuracy
accuracy = tf.reduce_mean( tf.cast( correct_prediction, tf.float32 ) )
# init all variables
init = tf.initialize_all_variables()
sess.run( init )
# N.B. You must run this function before `sess.run(train_step)` to
# start the input pipeline.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners( coord = coord )
for i in range(STEPS):
# No need to feed, because `x` and `y_` are already bound to
# the next input batch.
if i % STEP_PRINT == 0:
print( i )
# validate accuracy
if i % STEP_VALIDATE == 0:
print( sess.run( accuracy ) )
# train one step
sess.run( train_step )
# validate accuracy
print( sess.run( accuracy ) )
coord.request_stop()
coord.join( threads )
更新2016年10月6日
我花了一段时间才意识到,训练流水线和验证流水线并不具有相同的权重和偏见。
现在,我训练,保存模型并将模型加载到单独的脚本中,就像一个吊饰一样工作。
最佳答案
作为nessuno points out, tf.train.batch()
的结果(image_batch
和label_batch
)是tf.Tensor
对象,因此您不能将它们用作值以馈入子图。
使用tf.train.batch()
的典型方法是使用它来定义管道的输入(而不是将tf.placeholder()
用于x
和y_
),以便在TensorFlow图中处理批处理和预取。这是对程序第一部分的大致重组,该部分根据需要执行批处理:
with tf.Session() as sess:
# get filelist and labels
image_list, label_list = read_my_list( 1, 10 )
input_queue = tf.train.slice_input_producer([image_list, label_list],
num_epochs=10,
shuffle=True)
image, label = read_images_from_disk(input_queue)
# `image_batch` and `label_batch` represent the "next" batch
# read from the input queue.
image_batch, label_batch = tf.train.batch([image, label], batch_size=2)
x = image_batch
y_ = label_batch
# Define your model in terms of `x` and `y_` here....
train_step = ...
# N.B. You must run this function after creating your graph.
init = tf.initialize_all_variables()
sess.run(init)
# N.B. You must run this function before `sess.run(train_step)` to
# start the input pipeline.
tf.train.start_queue_runners(sess)
for i in range(100):
# No need to feed, because `x` and `y_` are already bound to
# the next input batch.
sess.run(train_step)
关于image - Tensorflow,train_step提要不正确,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/37454932/