我正在遍历管道,以打印出名为safety的类的20个最有用的功能。

classnum_saf = 3
inds = np.argsort(clf_3.named_steps['clf'].coef_[classnum_saf, :])[-20:]
for i in inds:
   f = feature_names[i]
   c = clf_3.named_steps['clf'].coef_[classnum_saf, [i]]
   print(f,c)
   output = {'features':f, 'coefficients':c}
   df = pd.DataFrame(output, columns = ['features', 'coefficients'])
   print(df)


我想要一个仅输出一个标头的数据帧,但是我将返回此输出,该输出似乎一遍又一遍地重复标头,因为它遍历[i]。

   1800 [-8.73800344]
   features  coefficients
   0     1800     -8.738003
   hr [-8.73656027]
   features  coefficients
   0       hr      -8.73656
   wa [-8.7336777]
   features  coefficients
   0       wa     -8.733678
   1400 [-8.72197545]
   features  coefficients
   0     1400     -8.721975
   hrwa [-8.71952656]
   features  coefficients
   0     hrwa     -8.719527
   perimeter [-8.71173264]
   features  coefficients
   0  perimeter     -8.711733
   response [-8.67388885]
   features  coefficients
   0  response     -8.673889
   analysis [-8.65460329]
   features  coefficients
   0  analysis     -8.654603
   00 [-8.58386785]
   features  coefficients
   0       00     -8.583868
   raw [-8.56148006]
   features  coefficients
   0      raw      -8.56148
   run [-8.51374794]
   features  coefficients
   0      run     -8.513748
   factor [-8.50725691]
   features  coefficients
   0   factor     -8.507257
   200 [-8.50334896]
   features  coefficients
   0      200     -8.503349
   file [-8.39990841]
   features  coefficients
   0     file     -8.399908
   pb [-8.38173753]
   features  coefficients
   0       pb     -8.381738
   mar [-8.21304343]
   features  coefficients
   0      mar     -8.213043
   1998 [-8.21239836]
   features  coefficients
   0     1998     -8.212398
   signal [-8.02426499]
   features  coefficients
   0   signal     -8.024265
   area [-8.01782987]
   features  coefficients
   0     area      -8.01783
   98 [-7.3166918]
   features  coefficients
   0       98     -7.316692


我如何像这样返回data frame

          features     coefficients
   0      1800          -8.738003
   ..     ...           ...
   18     area          -8.01783
   19     98            -7.316692


现在,当我返回print(d,f)时,它显示以下顶级值:

   1800 [-8.73800344]
   hr [-8.73656027]
   wa [-8.7336777]
   1400 [-8.72197545]
   hrwa [-8.71952656]
   perimeter [-8.71173264]
   response [-8.67388885]
   analysis [-8.65460329]
   00 [-8.58386785]
   raw [-8.56148006]
   run [-8.51374794]
   factor [-8.50725691]
   200 [-8.50334896]
   file [-8.39990841]
   pb [-8.38173753]
   mar [-8.21304343]
   1998 [-8.21239836]
   signal [-8.02426499]
   area [-8.01782987]
   98 [-7.3166918]


我研究了几个类似的问题hereherehere,但是它似乎并不能直接解决我的问题。

预先谢谢您,仍然在这里学习。

最佳答案

我尝试模拟一些数据,您可以在循环的每个步骤中将list附加到L,最后从df创建L

L = []
classnum_saf = 3
inds = np.argsort(clf_3.named_steps['clf'].coef_[classnum_saf, :])[-20:]
for i in inds:
   f = feature_names[i]
   c = clf_3.named_steps['clf'].coef_[classnum_saf, [i]]
   print(f,c)
   #add [0] for removing list of list (it works nice if len of f[i] == 1)
   L.append([c[i], f[i][0]])

df = pd.DataFrame(L, columns = ['features', 'coefficients'])
print(df)


样品:

import pandas as pd

f = [[1],[2],[3]]
c = ['a','b','c']

L = []
for i in range(3):
#   print(f[i],c[i])
   #swap c and f
   L.append([c[i], f[i][0]])

print (L)
[['a', 1], ['b', 2], ['c', 3]]

df = pd.DataFrame(L, columns = ['features', 'coefficients'])
print(df)

  features  coefficients
0        a             1
1        b             2
2        c             3

关于python - 防止 Pandas 数据框标题行在for语句中重复,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/38038383/

10-15 06:02
查看更多