我有一个.rvd数据的.csv数据集,该数据涉及第二人与之互动的时间:

tag_me是人员1的变量,tag_them是您在第二秒遇到的人的名称,time_local_s是进行交互的时间。 rfid在19:00:00开始记录,因此第一次互动是在19:22:36(19:00:00 + 1356秒)记录的。

tag_me,tag_them,time_local_s
0x597E5627,0x3C992634,1356
0x597E5627,0x3C992634,1360
0x597E5627,0x3C992634,1361
0x597E5627,0x3C992634,1362
0x597E5627,0x3C992634,1363
0x597E5627,0x7DA8FFB0,1364
0x597E5627,0x3C992634,1365
0x597E5627,0x3C992634,1365
0x597E5627,0x3C992634,1366
0x597E5627,0x7DA8FFB0,1366
0x597E5627,0x36570942,1366
0x597E5627,0x3C3A21AD,1369
0x597E5627,0x06497CA4,1370
0x597E5627,0x06497CA4,1372
0x597E5627,0x06497CA4,1372
0x597E5627,0x06497CA4,1374
0x597E5627,0x06497CA4,1374
0x597E5627,0x064F5882,1379


我想将每次互动分组为一行,记录互动开始,结束的时间以及花费的时间。因此,我可以过滤某个阈值(两个rfid彼此见面2秒钟当然不是真正的交互。

tag_me,tag_them,time_start,time_end,total_time
0x597E5627,0x3C992634,1356,1363,7
0x597E5627,0x7DA8FFB0,1364,1363,1
0x597E5627,0x3C992634,1365,1366,1
0x597E5627,0x7DA8FFB0,1366,1366,1
0x597E5627,0x36570942,1366,1366,1
0x597E5627,0x3C3A21AD,1369,1369.1
0x597E5627,0x06497CA4,1370,1374,4
0x597E5627,0x064F5882,1379,1379,1


到目前为止,我已经尝试过了:

data = []
with open('timemerger.csv') as f:
    for line in f:
        data.append(line)

past_interactions = []
interactions = []
now = -1
new_data = []
for line in enumerate(data):
    if line["time_local_s"] > now:
        for tag_them, indices in past_interactions:
            if tag_them not in data:
                interactions.append(entry["tag_them"])


---------------编辑7-5-2018 ----------

import pandas as pd
df = pd.read_csv('filter20seconden1.csv')

cols = df.columns.difference(['time_start', 'time_end'])
grps = df.time_start.sub(df.time_end.shift()).gt(20).cumsum()
gpby = df.groupby(grps)
new = gpby.agg(dict(time_start='min',
      time_end='max')).join(gpby[cols].sum())

最佳答案

就像您在评论中提到的那样,您不介意使用pandas,这是一种解决方案。它有点长,也许有一种更有效的方法,但是我认为它可以工作:

import pandas as pd
# Read in your csv
df = pd.read_csv('timemerger.csv')
# Create a new column with an "interaction number"
df = df.assign(interaction_num=(df.tag_them != df.tag_them.shift()).cumsum())
# Groupby the interaction number, and extract the min and max times:
gb = (df.groupby('interaction_num')
      .apply(
          lambda x: pd.Series([x['time_local_s'].min(),
                               x['time_local_s'].max()]
          ))
      .rename(columns={0:'time_start', 1:'time_end'}))
# Merge the min and max times per interaction number with your original dataframe:
df = df.merge(gb, left_on = 'interaction_num', right_index=True)
# Create a new column for length of time, groupby interaction again, and take first value:
df = (df.assign(total_time = df.time_end - df.time_start)
      .groupby('interaction_num')
      .first()
      .drop('time_local_s', axis=1))
# Finally, save your dataframe:
df.to_csv('output.csv', index=None)


您的新output.csv将如下所示:

tag_me,tag_them,time_start,time_end,total_time
0x597E5627,0x3C992634,1356,1363,7
0x597E5627,0x7DA8FFB0,1364,1364,0
0x597E5627,0x3C992634,1365,1366,1
0x597E5627,0x7DA8FFB0,1366,1366,0
0x597E5627,0x36570942,1366,1366,0
0x597E5627,0x3C3A21AD,1369,1369,0
0x597E5627,0x06497CA4,1370,1374,4
0x597E5627,0x064F5882,1379,1379,0


请注意,互动在同一秒开始和结束时为零,而所需的结果为1。可以通过在df.replace({'total_time':{0:1}}, inplace=True)之前使用to_csv来轻松更改(我将其保留在此处,因为我认为否则,您的数据将失去零秒互动与1秒互动之间的差异)。

分解:

第一个assign().shift()为单独的交互创建一列:

       tag_me    tag_them  time_local_s  interaction_num
...
3  0x597E5627  0x3C992634          1362                1
4  0x597E5627  0x3C992634          1363                1
5  0x597E5627  0x7DA8FFB0          1364                2
6  0x597E5627  0x3C992634          1365                3
7  0x597E5627  0x3C992634          1365                3
...


然后,.groupbylambda函数获取交互的minmax时间,并将其重命名为time_starttime_end

                 time_start  time_end
interaction_num
1                      1356      1363
2                      1364      1364
3                      1365      1366
4                      1366      1366
...


然后,您将该groupby的结果与原始数据帧合并,其中interaction_num与索引匹配,结果为:

...
3  0x597E5627  0x3C992634          1362                1        1356      1363
4  0x597E5627  0x3C992634          1363                1        1356      1363
5  0x597E5627  0x7DA8FFB0          1364                2        1364      1364
6  0x597E5627  0x3C992634          1365                3        1365      1366
7  0x597E5627  0x3C992634          1365                3        1365      1366
...


最后,再次使用assign,然后再次使用groupby interaction_num创建一列时差,并删除不必要的'time_local_s'列,得到最终的数据帧。

关于python - python将交互数据合并为一行,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/50089228/

10-15 03:30
查看更多