我有一个1列的df
List
0 What are you trying to achieve
1 What is your purpose right here
2 When students don’t have a proper foundation
3 I am going to DESCRIBE a sunset
我还有其他数据框df2
有2列
original correct
0 are were
1 sunset sunrise
2 I we
3 right correct
4 is was
我想替换df2中
original
列中出现的df中的此类单词并替换为
correct
列中的相应单词。并将新的字符串存储在其他数据帧
df_new
中是否可以不使用循环和迭代,而只能使用普通的 Pandas 概念?
即我的
df_new
应该包含。 List
0 What were you trying to achieve
1 What was your purpose correct here
2 When students don’t have a proper foundation
3 we am going to DESCRIBE a sunrise
这也是一个测试例子
我的
df
可能包含数百万行字符串,所以我的df2,我能走的最有效的解决方案是什么?
最佳答案
许多可能的解决方案之一:
In [371]: boundary = r'\b'
...:
...: df.List.replace((boundary + df2.orignal + boundary).values.tolist(),
...: df2.correct.values.tolist(),
...: regex=True)
...:
Out[371]:
0 What were you trying to achieve
1 What was your purpose correct here
2 When students don’t have a proper foundation
3 we am going to DESCRIBE a sunrise
Name: List, dtype: object
关于python - 用其他数据框 Pandas 中的相应单词替换数据框中的字符串行,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/42131594/