我尝试从包含我的数据的P-I curve.txt文件中导入浮点数。但是,将其转换为float时出现错误。我用下面的代码。

with open('C:/Users/Kevin/Documents/4e Jaar/fotonica/Metingen/P-I curve.txt') as csvfile:
    data= csv.reader(csvfile, delimiter = '\t')
    current=[]

    P_15=[]
    P_20=[]
    P_25=[]
    P_30=[]
    P_35=[]
    P_40=[]
    P_45=[]
    P_50=[]

    for row in data:

        current.append(float(row[0].replace(',','.')))
        P_15.append(float(row[2].replace(',','.')))
        P_20.append(float(row[4].replace(',','.')))
        P_25.append(float(row[6].replace(',','.')))
        P_30.append(float(row[8].replace(',','.')))
        P_35.append(float(row[10].replace(',','.')))
        P_40.append(float(row[12].replace(',','.')))
        P_45.append(float(row[14].replace(',','.')))
        P_50.append(float(row[16].replace(',','.')))


使用此代码,我得到以下错误,我知道第2行是一个字符串,但是如果是这样,为什么对于第1行却没有发生此错误?是否有其他数据可以在不使用csv import的情况下导入浮点数?我已经将数据从excel复制并粘贴到.txt文件中。

返回错误:

  File "C:/Users/Kevin/Documents/Python Scripts/P-I curves.py", line 29, in <module>
    P_15.append(float(row[2].replace(',','.')))

ValueError: could not convert string to float:


我尝试了另一个以下代码:

import pandas as pd

df=pd.read_csv('C:/Users/Kevin/Documents/4e Jaar/fotonica/Metingen/P-I curve.txt', decimal=',', sep='\t',header=0,names=['current','15','20','25','30','35','40','45','50']  )

#curre=df['current']
print(current)


txt文件具有标题,如下所示:

1.8   1.9  0.4     1.9  0.4     1.9  0.4     1.9       0.4
3.8   1.9  1.3     1.9  1.3     1.9  1.3     1.9       1.2
5.8   2.0  2.5     2.0  2.4     2.0  2.3     2.0       2.2
7.8   2.0  3.7     2.0  3.6     2.0  3.5     2.0       3.4
9.8   2.1  5.2     2.0  5.1     2.0  4.9     2.0       4.7
11.8  2.1  6.9     2.1  6.7     2.1  6.4     2.1       6.1
13.8  2.1  9.0     2.0  8.6     2.1  8.2     2.1       7.8
15.8  2.1  11.5    2.1  10.8    2.1  10.2    2.1       9.7
17.8  2.2  14.7    2.2  13.7    2.2  12.7    2.2      11.8
19.8  2.2  19.5    2.2  17.5    2.2  15.9    2.2      14.5
21.8  2.2  28.9    2.2  23.6    2.2  20.3    2.2      17.9
23.8  2.3  125.8   2.2  38.4    2.2  27.8    2.2      22.8
25.8  2.3  1669.0  2.3  634.0   2.3  51.7    2.3      31.4
27.8  2.3  3142.0  2.3  2154.0  2.3  982.0   2.3      62.2
29.8  2.3  4560.0  2.3  3594.0  2.3  2460.0  2.3    1075.0
31.8  2.3  5950.0  2.3  5010.0  2.3  3872.0  2.3    2540.0
33.8  2.4  7320.0  2.4  6360.0  2.4  5230.0  2.3    3880.0
35.8  2.4  8670.0  2.4  7700.0  2.4  6550.0  2.4    5210.0
37.8  NaN  NaN     NaN  NaN     2.4  7850.0  2.4    6480.0
39.8  NaN  NaN     NaN  NaN     NaN  NaN     NaN       NaN
41.8  NaN  NaN     NaN  NaN     NaN  NaN     NaN       NaN
Name: current, dtype: float64


python似乎正在返回所有内容,而不仅仅是返回我要打印的当前行头的第一行。我只想采取这一行,这样我就可以将其保存为数组。但是,我该如何从数据中具体绘制带有标头电流的线呢?

我不确定为什么它会返回所有内容,但我认为编码存在问题,因为我从excel复制并粘贴了数据。

请查看从excel复制时.txt的外观图像。

python - python:从文本导入数据-LMLPHP

我尝试了另一个短代码(我也手动删除了.txt文件的标题!),请参见以下说明:

data=np.loadtxt('C:/Users/Kevin/Documents/4e Jaar/fotonica/Metingen/ttest.txt',delimiter='\t')

data=float(data.replace(',','.'))


print(data[0])


与此代码,我得到跟随错误。

ValueError: could not convert string to float: b'1,8'


我发现这很奇怪。浮动和替换不足以解决此问题

最佳答案

我认为您需要省略header=0

df=pd.read_csv('C:/Users/Kevin/Documents/4e Jaar/fotonica/Metingen/P-I curve.txt',
                decimal=',',
                sep='\t',
                names=['current','15','20','25','30','35','40','45','50'])


编辑:

df=pd.read_csv('ttest.txt',
                decimal=',',
                sep='\t',
                names=['current','15','20','25','30','35','40','45','50'])
print (df)
    current      15      20      25      30      35      40      45     50
0       1.8     0.4     0.4     0.4     0.4     0.4     0.4     0.3    0.3
1       3.8     1.3     1.3     1.3     1.2     1.2     1.1     1.1    1.1
2       5.8     2.5     2.4     2.3     2.2     2.2     2.1     2.0    1.9
3       7.8     3.7     3.6     3.5     3.4     3.3     3.1     3.0    2.9
4       9.8     5.2     5.1     4.9     4.7     4.5     4.3     4.1    4.0
5      11.8     6.9     6.7     6.4     6.1     5.9     5.6     5.3    5.1
6      13.8     9.0     8.6     8.2     7.8     7.4     7.0     6.6    6.3
7      15.8    11.5    10.8    10.2     9.7     9.1     8.6     8.0    7.6
8      17.8    14.7    13.7    12.7    11.8    11.0    10.3     9.6    9.0
9      19.8    19.5    17.5    15.9    14.5    13.3    12.2    11.3   10.5
10     21.8    28.9    23.6    20.3    17.9    16.0    14.5    13.2   12.2
11     23.8   125.8    38.4    27.8    22.8    19.6    17.2    15.4   14.1
12     25.8  1669.0   634.0    51.7    31.4    24.5    20.6    17.9   16.2
13     27.8  3142.0  2154.0   982.0    62.2    33.1    25.3    21.0   18.5
14     29.8  4560.0  3594.0  2460.0  1075.0    60.0    32.6    25.0   21.3
15     31.8  5950.0  5010.0  3872.0  2540.0   903.0    49.9    30.8   24.6
16     33.8  7320.0  6360.0  5230.0  3880.0  2294.0   387.0    40.9   28.8
17     35.8  8670.0  7700.0  6550.0  5210.0  3621.0  1733.0    71.0   34.8
18     37.8     NaN     NaN  7850.0  6480.0  4880.0  3026.0   751.0   44.6
19     39.8     NaN     NaN     NaN     NaN  6100.0  4240.0  1998.0   70.2
20     41.8     NaN     NaN     NaN     NaN     NaN     NaN  3161.0  650.0




#list from column 15 with all values include NaNs
L1 = df['15'].tolist()
print (L1)
[0.4, 1.3, 2.5, 3.7, 5.2, 6.9, 9.0, 11.5, 14.7, 19.5, 28.9, 125.8, 1669.0,
 3142.0, 4560.0, 5950.0, 7320.0, 8670.0, nan, nan, nan]

#list from column 15 with removing NaNs
L2 = df['15'].dropna().tolist()
print (L2)
[0.4, 1.3, 2.5, 3.7, 5.2, 6.9, 9.0, 11.5, 14.7, 19.5, 28.9, 125.8, 1669.0,
 3142.0, 4560.0, 5950.0, 7320.0, 8670.0]




#convert all NaNs in all columns to 0
df = df.fillna(0)
print (df)
    current      15      20      25      30      35      40      45     50
0       1.8     0.4     0.4     0.4     0.4     0.4     0.4     0.3    0.3
1       3.8     1.3     1.3     1.3     1.2     1.2     1.1     1.1    1.1
2       5.8     2.5     2.4     2.3     2.2     2.2     2.1     2.0    1.9
3       7.8     3.7     3.6     3.5     3.4     3.3     3.1     3.0    2.9
4       9.8     5.2     5.1     4.9     4.7     4.5     4.3     4.1    4.0
5      11.8     6.9     6.7     6.4     6.1     5.9     5.6     5.3    5.1
6      13.8     9.0     8.6     8.2     7.8     7.4     7.0     6.6    6.3
7      15.8    11.5    10.8    10.2     9.7     9.1     8.6     8.0    7.6
8      17.8    14.7    13.7    12.7    11.8    11.0    10.3     9.6    9.0
9      19.8    19.5    17.5    15.9    14.5    13.3    12.2    11.3   10.5
10     21.8    28.9    23.6    20.3    17.9    16.0    14.5    13.2   12.2
11     23.8   125.8    38.4    27.8    22.8    19.6    17.2    15.4   14.1
12     25.8  1669.0   634.0    51.7    31.4    24.5    20.6    17.9   16.2
13     27.8  3142.0  2154.0   982.0    62.2    33.1    25.3    21.0   18.5
14     29.8  4560.0  3594.0  2460.0  1075.0    60.0    32.6    25.0   21.3
15     31.8  5950.0  5010.0  3872.0  2540.0   903.0    49.9    30.8   24.6
16     33.8  7320.0  6360.0  5230.0  3880.0  2294.0   387.0    40.9   28.8
17     35.8  8670.0  7700.0  6550.0  5210.0  3621.0  1733.0    71.0   34.8
18     37.8     0.0     0.0  7850.0  6480.0  4880.0  3026.0   751.0   44.6
19     39.8     0.0     0.0     0.0     0.0  6100.0  4240.0  1998.0   70.2
20     41.8     0.0     0.0     0.0     0.0     0.0     0.0  3161.0  650.0




#list from column 15
L3 = df['15'].tolist()
print (L3)
[0.4, 1.3, 2.5, 3.7, 5.2, 6.9, 9.0, 11.5, 14.7, 19.5, 28.9, 125.8, 1669.0,
 3142.0, 4560.0, 5950.0, 7320.0, 8670.0, 0.0, 0.0, 0.0]

关于python - python:从文本导入数据,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/48204730/

10-12 22:17
查看更多