我在熊猫中有以下数据框
date prod hourly_bucket tank trans flag
01-01-2019 TP 05:00:00-06:00:00 2 Preset Peak
01-01-2019 TP 05:00:00-06:00:00 2 Preset Peak
01-01-2019 TP 05:00:00-06:00:00 2 Non Preset Peak
02-01-2019 TP 05:00:00-06:00:00 2 Preset Lean
02-01-2019 TP 05:00:00-06:00:00 2 Preset Lean
02-01-2019 TP 05:00:00-06:00:00 2 Non Preset Lean
我想要的数据帧将是日级别和槽级别的聚合,然后计算
Preset,Non-Preset
小时内有多少Lean and Peak
个交易 date tank Lean_Non_Preset Lean_Preset Peak_Non_Preset Peak_Preset
01-01-2019 2 1 2 1 2
我正在熊猫后面
lean_peak_preset_cnt = df.pivot_table(index=['date','tank'], columns=['flag'],values=['trans'],aggfunc='count').reset_index()
但这没有给我所需的解决方案
最佳答案
将'trans'
添加到参数columns
,然后在具有MultiIndex
和map
的列中展平join
:
lean_peak_preset_cnt = df.pivot_table(index=['date','tank'],
columns=['flag','trans'],
aggfunc='size',
fill_value=0)
lean_peak_preset_cnt.columns = lean_peak_preset_cnt.columns.map('_'.join)
lean_peak_preset_cnt = lean_peak_preset_cnt.reset_index()
print (lean_peak_preset_cnt)
date tank Lean_No Preset Lean_Preset Peak_Non Preset Peak_Preset
0 01-01-2019 2 0 0 1 2
1 02-01-2019 2 1 2 0 0
关于python - 带有多列的 Pandas 数据透视表,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54143048/