我在熊猫中有以下数据框

  date        prod    hourly_bucket      tank      trans      flag
  01-01-2019  TP      05:00:00-06:00:00  2         Preset     Peak
  01-01-2019  TP      05:00:00-06:00:00  2         Preset     Peak
  01-01-2019  TP      05:00:00-06:00:00  2         Non Preset Peak
  02-01-2019  TP      05:00:00-06:00:00  2         Preset     Lean
  02-01-2019  TP      05:00:00-06:00:00  2         Preset     Lean
  02-01-2019  TP      05:00:00-06:00:00  2         Non Preset Lean


我想要的数据帧将是日级别和槽级别的聚合,然后计算Preset,Non-Preset小时内有多少Lean and Peak个交易

  date       tank   Lean_Non_Preset  Lean_Preset  Peak_Non_Preset  Peak_Preset
  01-01-2019 2      1                2            1                2


我正在熊猫后面

 lean_peak_preset_cnt = df.pivot_table(index=['date','tank'], columns=['flag'],values=['trans'],aggfunc='count').reset_index()


但这没有给我所需的解决方案

最佳答案

'trans'添加到参数columns,然后在具有MultiIndexmap的列中展平join

lean_peak_preset_cnt = df.pivot_table(index=['date','tank'],
                                      columns=['flag','trans'],
                                      aggfunc='size',
                                      fill_value=0)

lean_peak_preset_cnt.columns = lean_peak_preset_cnt.columns.map('_'.join)
lean_peak_preset_cnt = lean_peak_preset_cnt.reset_index()
print (lean_peak_preset_cnt)

         date  tank  Lean_No Preset  Lean_Preset  Peak_Non Preset  Peak_Preset
0  01-01-2019     2               0            0                1            2
1  02-01-2019     2               1            2                0            0

关于python - 带有多列的 Pandas 数据透视表,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54143048/

10-12 22:04
查看更多