我有以下 Pandas 数据框:
df = pd.read_csv('path/file/file.csv',
header=0, sep=',', names=['PhraseId', 'SentenceId', 'Phrase', 'Sentiment'])
我想用 andrew_curves 打印它,我尝试了以下操作:
andrews_curves(df, 'Name')
知道如何绘制这个吗?这是csv的内容:
PhraseId, SentenceId, Phrase, Sentiment
1, 1, A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story ., 1
2, 1, A series of escapades demonstrating the adage that what is good for the goose, 2
3, 1, A series, 2
4, 1, A, 2
5, 1, series, 2
6, 1, of escapades demonstrating the adage that what is good for the goose, 2
7, 1, of, 2
8, 1, escapades demonstrating the adage that what is good for the goose, 2
9, 1, escapades, 2
10, 1, demonstrating the adage that what is good for the goose, 2
11, 1, demonstrating the adage, 2
12, 1, demonstrating, 2
13, 1, the adage, 2
14, 1, the, 2
15, 1, adage, 2
16, 1, that what is good for the goose, 2
17, 1, that, 2
18, 1, what is good for the goose, 2
19, 1, what, 2
20, 1, is good for the goose, 2
21, 1, is, 2
22, 1, good for the goose, 3
23, 1, good, 3
24, 1, for the goose, 2
25, 1, for, 2
26, 1, the goose, 2
27, 1, goose, 2
28, 1, is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story ., 2
29, 1, is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story, 2
最佳答案
在您链接到的 the doc page 中,Iris 数据集有一列名为 'Name'
。你打电话的时候
andrews_curves(data, 'Name')
data
的行按 Name
的值分组。这就是为什么对于鸢尾花数据集,您将获得三种不同颜色的线条。
在您的数据集中,您有三列:
A
、 B
、 C
。要在 andrews_curves
上调用 df
,您首先需要确定要作为分组依据的值。例如,如果它是 C
列的值,则调用andrews_curves(data, 'C')
另一方面,如果您想按列名
A
、 B
、 C
进行分组,则首先融化您的 DataFrame 以将其从宽格式转换为长格式,然后
然后在
andrews_curves
列(保存值)上调用 variable
每行的 A
、 B
或 C
):import numpy as np
import pandas as pd
import pandas.plotting as pdplt
import matplotlib.pyplot as plt
x = np.linspace(-1, 1, 1000)
df = pd.DataFrame({'A': np.sin(x**2)/x,
'B': np.sin(x)*np.exp(-x),
'C': np.cos(x)*x})
pdplt.andrews_curves(pd.melt(df), 'variable')
plt.show()
产量
关于python - 如何使用andrew_curves绘制 Pandas 数据框?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/28223793/