我有类似df3的数据。要重现数据,请运行以下命令:
vec1 <- c("A", "B")
vec2 <- c("A", "B", "C")
df1 <- tibble::tribble(
~A, ~B,
"X", 4L,
"X", 9L,
"Y", 5L,
"Y", 2L,
"Y", 8L,
"Y", 2L) %>%
group_by(A) %>%
nest()
df2 <- tibble::tribble(
~A, ~C,
"X", vec1,
"Y", vec2)
df3 <- df1 %>% left_join(df2, by = "A")
我需要使用以下方法过滤嵌套数据:
df4 <- df3 %>% filter(when C==vec1, B (part of nested data now) < 5
when C==vec2, B (part of nested data now) >4)
或可能是这样的:
df4 <- df3 %>% map(.$data, ~filter((identicle(.$C, vec1) & B < 5) |
identical(.$C, vec2) & B >4))
我只有df3,我想要df4。我应该如何使用purrr进行上述过滤,以获得以下所需的df4输出。
df11 <- tibble::tribble(
~A, ~B,
"X", 4L,
"Y", 5L,
"Y", 8L) %>%
group_by(A) %>%
nest()
df4 <- df11 %>% left_join(df2, by = "A")
最佳答案
这是一个使用map2
和identical
进行条件检查的选项:
df3 %>%
mutate(
data = map2(
data, C, ~ if(identical(.y, vec1)) filter(.x, B < 5) else filter(.x, B > 4)
)
) %>%
identical(df4)
# [1] TRUE
关于r - Purrr根据包含字符向量的未嵌套变量过滤嵌套数据,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/50124514/