这是我的第一篇 StackOverflow 帖子,所以我希望它不会太难理解。

我有一个大型数据集(~14,000)行鸟类观察。这些数据是通过站在一个地方(点)并计算您在 3 分钟内看到的鸟类来收集的。在每个点计数内,一个新的鸟类观察变成一个新行,因此有许多重复的日期、时间、地点和点(一个地点内的特定位置)。同样,每个点数为 3 分钟。因此,如果您在第 1 分钟看到黄色莺(编码为 YEWA),那么它将与该特定点数(日期、地点、点和时间)的 MINUTE=1 相关联。 ID = 观察者首字母和 Number = 发现的鸟类数量(此处不一定重要)。

但是,如果没有看到 BIRDS,那么“NOBI”会在该特定分钟进入数据集。因此,如果整个 3 分钟的点计数都有 NOBI,则它们将是具有相同日期、地点、点和时间的三行,并且三行中每一行的“BIRD”列中的“NOBI”。

所以我有两个主要问题。首先是一些观察者在所有三分钟内输入“NOBI”一次,而不是三次(每分钟一次)。任何地方“分钟”
已留空(成为 NA),并且“BIRD”=“NOBI”,我需要添加三行数据,除“MINUTE”之外的所有列都具有相同的值,对于“MINUTE”应该是 1、2 和 3各自的行。

如果它看起来像这样:

   ID     DATE SITE POINT TIME MINUTE BIRD NUMBER
1  BS 5/9/2018  CW2  U125 7:51     NA NOBI     NA
2  BS 5/9/2018  CW1  D250 8:12      1 YEWA     2
3  BS 5/9/2018  CW1  D250 8:12      2 NOBI     NA
4  BS 5/9/2018  CW1  D250 8:12      3 LABU     1

它应该看起来像这样:
   ID     DATE SITE POINT TIME MINUTE BIRD NUMBER
1  BS 5/9/2018  CW2  U125 7:51      1 NOBI     NA
2  BS 5/9/2018  CW2  U125 7:51      2 NOBI     NA
3  BS 5/9/2018  CW2  U125 7:51      3 NOBI     NA
4  BS 5/9/2018  CW1  D250 8:12      1 YEWA     2
5  BS 5/9/2018  CW1  D250 8:12      2 NOBI     NA
6  BS 5/9/2018  CW1  D250 8:12      3 LABU     1

注意:如果您想将其中一些数据输入到 R 控制台,我在本文末尾使用 dput 包含了一些数据,这比复制粘贴上面的内容更容易输入

我尝试复制具有多个条件的 if 语句失败(基于:
R multiple conditions in if statement & Ifelse in R with multiple categorical conditions ) 我尝试了多种方式来编写,包括使用来自 dplyr 的管道,但请参阅下面的示例,了解一些代码、注释和错误消息。
>if(PC$BIRD == "NOBI" & PC$MINUTE==NA){PC$Fix<-TRUE}
 Error in if (PC$BIRD == "NOBI" & PC$MINUTE == NA) { :
   missing value where TRUE/FALSE needed
 In addition: Warning message:
 In if (PC$BIRD == "NOBI" & PC$MINUTE == NA) { :
   the condition has length > 1 and only the first element will be used

## Then I need to do something like this:
>if(PC$Fix<-TRUE){duplicate(row where Fix==TRUE, times=2)} #I know this isn't
    ### even close, but I want the row to be replicated two more times so
    ### that there are 3 total rows witht he same values
    ### Fix indicates that a fix is needed in this example
# Then somehow I need to assign a 1 to PC$MINUTE for the first row (original row),
# a 2 to the next row (with other values from other columns being the same), and a 3
# to the last duplicated row (still other values from other columns being the same)

第二个问题,对我来说似乎更困难的是按顺序搜索数据集,或者以某种方式按 DATE、SITE、POINT 和 TIME 搜索。分钟值应始终从 1... 到 2... 再到 3,然后为下一组日期、时间、站点和点返回到 1。也就是说,每个点计数都应具有 1:3 的所有值。但是,一个计数可能在 MINUTE=1 中有多次目击,因此在 MINUTE=2 之前有 5 或 6(或 20)分钟 MINUTE=1。但是,同样,当没有 BIRDS (NOBI) 时,这个数据集中的一些观察者只是简单地留下了一行,而不是每 MINUTE 写一行 BIRD="NOBI"。那就是如果数据集去:
   ID     DATE SITE POINT TIME MINUTE BIRD NUMBER
...
4  BS 5/9/2018  CW2  U125 7:54      1 AMRO      1
5  BS 5/9/2018  CW2  U125 7:54      1 SPTO      1
6  BS 5/9/2018  CW2  U125 7:57      1 AMRO      1
7  BS 5/9/2018  CW2  U125 7:57      1 SPTO      1
8  BS 5/9/2018  CW2  U125 7:57      1 AMCR      3
9  BS 5/9/2018  CW2  U125 7:57      2 SPTO      1
10 BS 5/9/2018  CW2  U125 7:57      2 HOWR      1
11 BS 5/9/2018  CW2  U125 7:57      3 UNBI      1

我们可以看到 7:57 点计数时间完成(有 MINUTE 值 1:3)。但是,7:54 点计数时间在 MINUTE=1 处停止。意思是,我需要在下面再输入两行,这些行具有所有相同的日期、站点、地点、时间信息,但是对于第一行添加 MINUTE=2 和 BIRD="NOBI"并且 MINUTE=3 和 BIRD="NOBI "对于第二个添加的行。所以它应该是这样的:
   ID     DATE SITE POINT TIME MINUTE BIRD NUMBER
...
4  BS 5/9/2018  CW2  U125 7:54      1 AMRO      1
5  BS 5/9/2018  CW2  U125 7:54      1 SPTO      1
6  BS 5/9/2018  CW2  U125 7:54      2 NOBI      NA
7  BS 5/9/2018  CW2  U125 7:54      3 NOBI      NA
8  BS 5/9/2018  CW2  U125 7:57      1 AMRO      1
9  BS 5/9/2018  CW2  U125 7:57      1 SPTO      1
10 BS 5/9/2018  CW2  U125 7:57      1 AMCR      3
11 BS 5/9/2018  CW2  U125 7:57      2 SPTO      1
12 BS 5/9/2018  CW2  U125 7:57      2 HOWR      1
13 BS 5/9/2018  CW2  U125 7:57      3 UNBI      1

最后,我明白这是一个漫长而复杂的问题,我可能没有很好地表达出来。如果需要澄清,请告诉我,我很乐意听取任何建议,即使它不能完全解决我的问题。先感谢您!

如果您想将我的数据样本输入 R 中,则此行下方的所有内容仅对您有用

要将我的数据输入到 R 控制台,复制并粘贴从“结构”函数到代码末尾的所有内容,以将其作为数据框输入到 R 控制台中,代码为:dataframe<-structure(list...请参阅 Example of using dput() 寻求帮助。
PC<-read.csv("PC.csv") ### ORIGINAL FILE
dput(PC)
structure(list(ID = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "BS", class = "factor"),
DATE = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "5/9/2018", class = "factor"),
SITE = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "CW2", class = "factor"),
POINT = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("M", "U125"), class = "factor"),
TIME = structure(c(8L, 8L, 8L, 9L, 9L, 10L, 10L, 10L, 10L,
10L, 10L, 11L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 4L,
4L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L), .Label = c("6:48", "6:51",
"6:54", "6:57", "7:12", "7:15", "7:18", "7:51", "7:54", "7:57",
"8:00"), class = "factor"), MINUTE = c(1L, 2L, 3L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 3L, 1L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 1L,
1L, 1L, 2L, 3L, 1L, 1L, 1L, 2L, 3L, 3L, NA, NA), BIRD = structure(c(6L,
6L, 6L, 2L, 7L, 2L, 7L, 1L, 7L, 5L, 8L, 8L, 6L, 6L, 6L, 6L,
6L, 6L, 7L, 7L, 7L, 7L, 6L, 8L, 3L, 7L, 9L, 5L, 4L, 2L, 6L,
6L), .Label = c("AMCR", "AMRO", "BRSP", "DUFL", "HOWR", "NOBI",
"SPTO", "UNBI", "VESP"), class = "factor"), NUMBER = c(NA,
NA, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, NA, NA, NA,
NA, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA,
NA)), class = "data.frame", row.names = c(NA, -32L))


PCc<-read.csv("PC_Corrected.csv")  #### WHAT I NEED MY DATABASE TO LOOK LIKE
dput(PCc)
structure(list(ID = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = "BS", class = "factor"), DATE = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "5/9/2018", class = "factor"),
SITE = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = "CW2", class = "factor"), POINT = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("M",
"U125"), class = "factor"), TIME = structure(c(8L, 8L, 8L,
9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L), .Label = c("6:48",
"6:51", "6:54", "6:57", "7:12", "7:15", "7:18", "7:51", "7:54",
"7:57", "8:00"), class = "factor"), MINUTE = c(1L, 2L, 3L,
1L, 1L, 2L, 3L, 1L, 1L, 1L, 2L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 1L, 2L, 3L, 1L, 1L, 2L, 3L, 1L, 1L, 1L,
2L, 3L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), BIRD = structure(c(6L,
6L, 6L, 2L, 7L, 6L, 6L, 2L, 7L, 1L, 7L, 5L, 8L, 8L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 6L, 6L, 7L, 7L, 6L, 8L, 3L,
7L, 9L, 5L, 4L, 2L, 6L, 6L, 6L, 6L, 6L, 6L), .Label = c("AMCR",
"AMRO", "BRSP", "DUFL", "HOWR", "NOBI", "SPTO", "UNBI", "VESP"
), class = "factor"), NUMBER = c(NA, NA, NA, 1L, 1L, NA,
NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, NA, NA, NA, NA, NA, NA,
NA, 1L, 1L, NA, NA, 1L, 1L, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
NA, NA, NA, NA, NA, NA)), class = "data.frame", row.names = c(NA,
-42L))

最佳答案

这是使用 dplyr 元包中的 tidyrtidyverse 来实现的方法。

# Step one - identify missing rows.
#    For each DATE, SITE, POINT, TIME, count how many of each minute
library(tidyverse)

# Convert factors to character to make later joining simpler,
#   and fix missing ID's by assuming prior line should be used,
#   and make NOBI rows have a count of NA
PC_2_clean <- PC %>%
  mutate_if(is.factor, as.character) %>%
  fill(ID, .direction = "up") %>%
  mutate(NUMBER = if_else(BIRD == "NOBI", NA_integer_, NUMBER))


# Create a wide table with spots for each minute. Missing will
#   show up as NA's
# All the NA's here in the 1, 2, and 3 columns represent
#   missing minutes that we should add.
PC_3_NA_find <- PC_2_clean %>%
  count(ID, DATE, SITE, POINT, TIME, MINUTE) %>%
  spread(MINUTE, n)

PC_3_NA_find
# A tibble: 11 x 9
# ID    DATE     SITE  POINT TIME    `1`   `2`   `3` `<NA>`
# <chr> <chr>    <chr> <chr> <chr> <int> <int> <int>  <int>
#   1 BS    5/9/2018 CW2   M     7:12      3     1     2     NA
# 2 BS    5/9/2018 CW2   M     7:15     NA    NA    NA      1
# 3 BS    5/9/2018 CW2   M     7:18     NA    NA    NA      1
# 4 BS    5/9/2018 CW2   U125  6:48      1     1     1     NA
# 5 BS    5/9/2018 CW2   U125  6:51      1     1     1     NA
# 6 BS    5/9/2018 CW2   U125  6:54      2    NA    NA     NA
# 7 BS    5/9/2018 CW2   U125  6:57      2     1     1     NA
# 8 BS    5/9/2018 CW2   U125  7:51      1     1     1     NA
# 9 BS    5/9/2018 CW2   U125  7:54      2    NA    NA     NA
# 10 BS    5/9/2018 CW2   U125  7:57      3     2     1     NA
# 11 BS    5/9/2018 CW2   U125  8:00      1    NA    NA     NA


# Take the NA minute entries and make the desired line for each
PC_4_rows_to_add <- PC_3_NA_find %>%
  gather(MINUTE, count, `1`:`3`) %>%
  filter(is.na(count)) %>%
  select(-count, -`<NA>`) %>%

  mutate(MINUTE = as.integer(MINUTE),
         BIRD = "NOBI",
         NUMBER = NA_integer_)


# Add these lines to the original,  remove the NA minute rows
#   (these have been replaced with minute rows), and sort
PC_5_with_NOBIs <- PC_2_clean %>%
  bind_rows(PC_4_rows_to_add) %>%
  filter(MINUTE != "NA") %>%
  arrange(ID, DATE, SITE, POINT, TIME, MINUTE, BIRD)


# Check result
PC_5_with_NOBIs  %>%
  count(ID, DATE, SITE, POINT, TIME, MINUTE) %>%
  spread(MINUTE, n)

PC_5_with_NOBIs



# Now to confirm it matches your desired output.
#   Note, I convert to character to avoid mismatches between factors
PCc_char <- PCc %>%
  mutate_if(is.factor, as.character) %>%
  arrange(ID, DATE, SITE, POINT, TIME, MINUTE, BIRD)

identical(PC_5_with_NOBIs, PCc_char)
# [1] TRUE

关于r - 大数据集清洗 : How to fill in missing data based on multiple categories and searching by row order,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/52300467/

10-12 17:19
查看更多