使用R,我需要创建一个报告,其中每个部门支出最多的前2名员工,并为该部门的其他员工添加“其他”。例如,我需要与此类似的报告。
Dept. EmployeeId Expense
Marketing 12345 100
Marketing 12346 90
Marketing Others 200
Sales 12347 50 <-- There's just one employee with expenses
Research 12348 2000
Research 12349 900
Research Others 10000
换句话说,我需要汇总数据,重点是支出最多的前2名员工。费用总额栏应为公司费用总额。
employeIds <- sample(1000:9999, 20)
depts <- sample(c('Sales', 'Marketing', 'Research'), 20, replace = TRUE)
expenses <- sample(1:1000, 20, replace = TRUE)
df <- data.frame(employeIds, depts, expenses)
# Based on that data, how do I build a table with the top 2 employees with the most expenses in each department, including an "Other" employee per department.
我是R的新手,我不确定该如何处理。在SQL中,我本可以使用RANK()函数和JOIN,但是这里不是一个选项。
最佳答案
这是data.table
解决方案:
创建数据:我也做出了不会出现“其他”的情况(该部门的条目数为:1
set.seed(45)
employeIds <- sample(1000:9999, 20)
depts <- sample(c('Sales', 'Marketing', 'Research'), 20, replace = TRUE)
expenses <- sample(1:1000, 20, replace = TRUE)
df <- data.frame(employeIds, depts, expenses)
df <- df[-c(6,10,12,18,19), ]
一种
data.table
解决方案:require(data.table)
dt <- data.table(df, key=c("depts", "expenses"))
k <- 2
dt[, if(.N > k) {
idx <- (seq_len(.N)-1) %/% max(k, (.N - k)) == 1
list(EmployeeIds = c(employeIds[idx], "Others"),
Expenses = c(expenses[idx], sum(expenses[!idx])))
} else {
list(EmployeeIds = as.character(employeIds), Expenses = expenses)
}, by = depts]
# depts EmployeeIds Expenses
# 1: Marketing 4870 567
# 2: Marketing 3167 591
# 3: Marketing Others 2285
# 4: Research 5989 878
# 5: Research 9667 930
# 6: Research Others 1301
# 7: Sales 6700 129
# 8: Sales 3857 714
想法:使用
dt
创建key = depts, expenses
的第一步是确保expenses
升序排列。然后,根据每个dept
的条目数,我们是否创建“其他”条目。关于r - 汇总和排序数据框,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/16148482/