我正在尝试使用pandas reindex函数填充时间序列数据中的缺失行。
我的数据如下:
100,2007,239,4,29.588,-30.851,-999.0,-999.0,-999.0,-999.00,13.125,-999.00
100,2007,239,5,29.573,-30.843,-999.0,-999.0,-999.0,-999.00,13.126,-999.00
100,2007,239,14,29.389,-30.880,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
100,2007,239,15,29.367,-30.901,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
100,2007,239,24,29.374,-30.920,-999.0,-999.0,-999.0,-999.00,13.135,-999.00
.
.
第四列表示的是一天时间间隔为一分钟的时间序列数据。与正常时间序列索引不同,此数据的时间索引看起来像0到59、100到159 .... 2300到2359,因为1天是24小时,而1小时是60分钟。因此,用“ nan”值填补空白,我将代码制作如下:
S = []
for i in range(0,24):
s = np.arange(i*100,i*100+60)
s = list(s)
S = S + s
pd.set_option('max_rows',10)
for INPUT in FileList:
output = INPUT + "result" # set the output files
data=pd.read_csv(INPUT,sep=',',index_col=[3],parse_dates=[3])
index = 'S'#make the reference index to fill
df = data
sk_f = df.reindex(index)
sk_f.to_csv(output,na_rep='nan')
通过此代码,我打算在第四列基于索引S的索引之后的“ nan”行填充空白,S是参考索引。
但是结果只是“ nan”行,而不是填补以下空白:
,100,2007,241,22.471,-31.002,-999.0,-999.0.1,-999.0.2,-999.00,13.294,-999.00 .1
0,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
1,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
2,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
3,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
4,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
5,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
6,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
7,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
8,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
9,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
10,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
11,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
我的期望是填补原始数据中缺失行的空白。例如,在原始数据中,索引线0到3之间没有低点。所以我想用原始数据格式填充这些行。
我可能会错过一些东西。
如果您能提供任何想法或帮助,我将不胜感激。
谢谢,
以撒
最佳答案
首先,我发现创建列表S = S + s
有问题的缩进。您必须使用,因为列表S
仅保留最后一个s
:
S = []
for i in range(0,24):
s = np.arange(i*100,i*100+60)
s = list(s)
S = S + s #keep only last s
至:
S = []
for i in range(0,24):
s = np.arange(i*100,i*100+60)
s = list(s)
S = S + s
或更短:
S = []
for i in range(0,24):
S = S + list(np.arange(i*100,i*100+60))
接下来是有问题的
index = 'S'
我认为是错字,也可能是index = S
。您可以添加功能
bfill()
并向后填补空白。 linksk_f = df.reindex(index).bfill()
码:
import pandas as pd
import numpy as np
import io
S = []
for i in range(0,24):
S = S + list(np.arange(i*100,i*100+60))
#original data
temp=u"""100,2007,239,4,29.588,-30.851,-999.0,-999.0,-999.0,-999.00,13.125,-999.00
100,2007,239,5,29.573,-30.843,-999.0,-999.0,-999.0,-999.00,13.126,-999.00
100,2007,239,14,29.389,-30.880,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
100,2007,239,15,29.367,-30.901,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
100,2007,239,24,29.374,-30.920,-999.0,-999.0,-999.0,-999.00,13.135,-999.00"""
#pd.set_option('max_rows',10)
data=pd.read_csv(io.StringIO(temp),sep=',', header=None, index_col=[3], parse_dates=[3])
data.index.name = None
print data
# 0 1 2 4 5 6 7 8 9 10 11
#4 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#5 100 2007 239 29.573 -30.843 -999 -999 -999 -999 13.126 -999
#14 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#15 100 2007 239 29.367 -30.901 -999 -999 -999 -999 13.131 -999
#24 100 2007 239 29.374 -30.920 -999 -999 -999 -999 13.135 -999
index = S #make the reference index to fill
df = data
sk_f = df.reindex(index).bfill()
print sk_f.head(20)
# 0 1 2 4 5 6 7 8 9 10 11
#0 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#1 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#2 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#3 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#4 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#5 100 2007 239 29.573 -30.843 -999 -999 -999 -999 13.126 -999
#6 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#7 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#8 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#9 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#10 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#11 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#12 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#13 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#14 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#15 100 2007 239 29.367 -30.901 -999 -999 -999 -999 13.131 -999
#16 100 2007 239 29.374 -30.920 -999 -999 -999 -999 13.135 -999
#17 100 2007 239 29.374 -30.920 -999 -999 -999 -999 13.135 -999
#18 100 2007 239 29.374 -30.920 -999 -999 -999 -999 13.135 -999
#19 100 2007 239 29.374 -30.920 -999 -999 -999 -999 13.135 -999
关于python - 用 Pandas 重新索引功能填充丢失的数据行,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/32976987/