我正在尝试使用pandas reindex函数填充时间序列数据中的缺失行。
我的数据如下:

 100,2007,239,4,29.588,-30.851,-999.0,-999.0,-999.0,-999.00,13.125,-999.00
 100,2007,239,5,29.573,-30.843,-999.0,-999.0,-999.0,-999.00,13.126,-999.00
 100,2007,239,14,29.389,-30.880,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
 100,2007,239,15,29.367,-30.901,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
 100,2007,239,24,29.374,-30.920,-999.0,-999.0,-999.0,-999.00,13.135,-999.00
                                       .
                                       .


第四列表示的是一天时间间隔为一分钟的时间序列数据。与正常时间序列索引不同,此数据的时间索引看起来像0到59、100到159 .... 2300到2359,因为1天是24小时,而1小时是60分钟。因此,用“ nan”值填补空白,我将代码制作如下:

S = []
for i in range(0,24):

     s = np.arange(i*100,i*100+60)
     s = list(s)
S = S + s

pd.set_option('max_rows',10)
for INPUT in FileList:
     output = INPUT + "result" # set the output files
     data=pd.read_csv(INPUT,sep=',',index_col=[3],parse_dates=[3])
     index = 'S'#make the reference index to fill
     df = data
     sk_f = df.reindex(index)
     sk_f.to_csv(output,na_rep='nan')


通过此代码,我打算在第四列基于索引S的索引之后的“ nan”行填充空白,S是参考索引。
但是结果只是“ nan”行,而不是填补以下空白:

,100,2007,241,22.471,-31.002,-999.0,-999.0.1,-999.0.2,-999.00,13.294,-999.00    .1
0,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
1,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
2,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
3,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
4,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
5,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
6,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
7,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
8,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
9,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
10,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
11,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan


我的期望是填补原始数据中缺失行的空白。例如,在原始数据中,索引线0到3之间没有低点。所以我想用原始数据格式填充这些行。
我可能会错过一些东西。
如果您能提供任何想法或帮助,我将不胜感激。

谢谢,
以撒

最佳答案

首先,我发现创建列表S = S + s有问题的缩进。您必须使用,因为列表S仅保留最后一个s

S = []
for i in range(0,24):

     s = np.arange(i*100,i*100+60)
     s = list(s)
S = S + s #keep only last s


至:

S = []
for i in range(0,24):
    s = np.arange(i*100,i*100+60)
    s = list(s)
    S = S + s


或更短:

S = []
for i in range(0,24):
    S = S + list(np.arange(i*100,i*100+60))


接下来是有问题的index = 'S'我认为是错字,也可能是index = S
您可以添加功能bfill()并向后填补空白。 link

sk_f = df.reindex(index).bfill()


码:

import pandas as pd
import numpy as np
import io

S = []
for i in range(0,24):
    S = S + list(np.arange(i*100,i*100+60))

#original data
temp=u"""100,2007,239,4,29.588,-30.851,-999.0,-999.0,-999.0,-999.00,13.125,-999.00
100,2007,239,5,29.573,-30.843,-999.0,-999.0,-999.0,-999.00,13.126,-999.00
100,2007,239,14,29.389,-30.880,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
100,2007,239,15,29.367,-30.901,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
100,2007,239,24,29.374,-30.920,-999.0,-999.0,-999.0,-999.00,13.135,-999.00"""

#pd.set_option('max_rows',10)

data=pd.read_csv(io.StringIO(temp),sep=',', header=None, index_col=[3], parse_dates=[3])
data.index.name = None
print data

#     0     1    2       4       5    6    7    8    9       10   11
#4   100  2007  239  29.588 -30.851 -999 -999 -999 -999  13.125 -999
#5   100  2007  239  29.573 -30.843 -999 -999 -999 -999  13.126 -999
#14  100  2007  239  29.389 -30.880 -999 -999 -999 -999  13.131 -999
#15  100  2007  239  29.367 -30.901 -999 -999 -999 -999  13.131 -999
#24  100  2007  239  29.374 -30.920 -999 -999 -999 -999  13.135 -999

index = S #make the reference index to fill
df = data
sk_f = df.reindex(index).bfill()

print sk_f.head(20)
#     0     1    2       4       5    6    7    8    9       10   11
#0   100  2007  239  29.588 -30.851 -999 -999 -999 -999  13.125 -999
#1   100  2007  239  29.588 -30.851 -999 -999 -999 -999  13.125 -999
#2   100  2007  239  29.588 -30.851 -999 -999 -999 -999  13.125 -999
#3   100  2007  239  29.588 -30.851 -999 -999 -999 -999  13.125 -999
#4   100  2007  239  29.588 -30.851 -999 -999 -999 -999  13.125 -999
#5   100  2007  239  29.573 -30.843 -999 -999 -999 -999  13.126 -999
#6   100  2007  239  29.389 -30.880 -999 -999 -999 -999  13.131 -999
#7   100  2007  239  29.389 -30.880 -999 -999 -999 -999  13.131 -999
#8   100  2007  239  29.389 -30.880 -999 -999 -999 -999  13.131 -999
#9   100  2007  239  29.389 -30.880 -999 -999 -999 -999  13.131 -999
#10  100  2007  239  29.389 -30.880 -999 -999 -999 -999  13.131 -999
#11  100  2007  239  29.389 -30.880 -999 -999 -999 -999  13.131 -999
#12  100  2007  239  29.389 -30.880 -999 -999 -999 -999  13.131 -999
#13  100  2007  239  29.389 -30.880 -999 -999 -999 -999  13.131 -999
#14  100  2007  239  29.389 -30.880 -999 -999 -999 -999  13.131 -999
#15  100  2007  239  29.367 -30.901 -999 -999 -999 -999  13.131 -999
#16  100  2007  239  29.374 -30.920 -999 -999 -999 -999  13.135 -999
#17  100  2007  239  29.374 -30.920 -999 -999 -999 -999  13.135 -999
#18  100  2007  239  29.374 -30.920 -999 -999 -999 -999  13.135 -999
#19  100  2007  239  29.374 -30.920 -999 -999 -999 -999  13.135 -999

关于python - 用 Pandas 重新索引功能填充丢失的数据行,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/32976987/

10-12 16:54
查看更多