我正在尝试在pandas数据框列中计算唯一值,该列包含由字符串分隔的多个值。如果是系列,可以使用value_counts()进行此操作,但是如何在数据框中执行此操作?似乎数据框应该更容易。

数据:

                      ID       Tags
 Created at
 2016-03-10 09:46:00  3074     tag_a
 2016-04-13 11:50:00  3524     tag_a tag_b
 2016-05-18 15:22:00  3913     tag_a tag_b tag_c


码:

%matplotlib inline
import pandas as pd

# read csv into the data dataframe
allData = r'myData.csv'

tickets_df = pd.read_csv((allData),usecols=['Id','Created at','Tags'],parse_dates=['Created at'], index_col=['Created at'])
tickets_df.fillna(0,inplace=True)
tickets_df['2016':'2016']

# this would work with a series:

tickets_df[tickets_df['Tags'].str.split().apply(lambda x: pd.Series(x).value_counts()).sum()]


错误:

KeyError: '[   3.    2.    3.    5.    2.  102.    9.    5.    1.    4.    1.  161.\n    4.    4.    1.    6.    4.   34.    1.    1.    1.    6.    2.    5.\n    1.    1.    1.    1.   11.    2.    1.    1.    3.    1.    1.    1.\n    1.    1.    1.    1.    2.    1.    1.    2.    2.    6.    1.    4.\n    2.    1.    1.    2.    1.    1.    1.    3.    2.    1.    4.   35.\n   11.    2.    1.   13.    3.    8.   63.   87.    2.    2.    1.    1.\n    1.    1.    1.    1.  150.    1.   24.    3.    7.    5.    1.    1.\n    3.    4.    2.    6.    1.    2.    3.    5.    2.    5.   15.    1.\n   42.    1.   14.    1.    1.    1.    6.   13.   13.    9.    2.   11.\n    3.    1.    1.] not in index'


所需输出:

tag_a  3
tag_b  2
tag_c  1

最佳答案

使用str.splitexpand=True将每个字符串分成不同的列,然后使用stack后跟value_counts

df['Tags'].str.split(expand=True).stack().value_counts()


结果输出:

tag_a    3
tag_b    2
tag_c    1

关于python - 在Python pandas数据框列中计算多个值,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/39733948/

10-12 16:53
查看更多