我想在python中用多个x类别从"is"或“否”的数据中绘制条形图。我已经开始编写一些代码,但是我认为我正在以缓慢的方式获得所需的解决方案。对于使用seaborn,Matplotlib或pandas但不使用Bokeh的解决方案,我会很好,因为我想制作可缩放的出版物质量的数字。
最终我想要的是:
这是我正在使用的数据集:
import pandas as pd
data = [{'ship': 'Yes','canoe': 'Yes', 'cruise': 'Yes', 'kayak': 'No','color': 'Red'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'Yes','canoe': 'No','color': 'Green'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'No','canoe': 'No','color': 'Green'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'No','canoe': 'No','color': 'Red'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'Yes','canoe': 'No','color': 'Red'},{'ship': 'No', 'cruise': 'Yes', 'kayak': 'No','canoe': 'Yes','color': 'Green'},{'ship': 'No', 'cruise': 'No', 'kayak': 'No','canoe': 'No','color': 'Green'},{'ship': 'No', 'cruise': 'No', 'kayak': 'No','canoe': 'No','color': 'Red'}]
df = pd.DataFrame(data)
这就是我开始的目的:
print(df['color'].value_counts())
red = 4 # there must be a better way to code this rather than manually. Perhaps using len()?
green = 4
# get count per type
ca = df['canoe'].value_counts()
cr = df['cruise'].value_counts()
ka = df['kayak'].value_counts()
sh = df['ship'].value_counts()
print(ca, cr, ka, sh)
# group by color
cac = df.groupby(['canoe','color'])
crc = df.groupby(['cruise','color'])
kac = df.groupby(['kayak','color'])
shc = df.groupby(['ship','color'])
# make plots
cac2 = cac['color'].value_counts().unstack()
cac2.plot(kind='bar', title = 'Canoe by color')
但是,我真正想要的是所有x类别都放在一个图上,只显示"is"响应的结果,并视为"is"的比例,而不是仅仅计算在内。帮助?
最佳答案
我们试试看。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from itertools import groupby
data = [{'ship': 'Yes','canoe': 'Yes', 'cruise': 'Yes', 'kayak': 'No','color': 'Red'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'Yes','canoe': 'No','color': 'Green'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'No','canoe': 'No','color': 'Green'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'No','canoe': 'No','color': 'Red'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'Yes','canoe': 'No','color': 'Red'},{'ship': 'No', 'cruise': 'Yes', 'kayak': 'No','canoe': 'Yes','color': 'Green'},{'ship': 'No', 'cruise': 'No', 'kayak': 'No','canoe': 'No','color': 'Green'},{'ship': 'No', 'cruise': 'No', 'kayak': 'No','canoe': 'No','color': 'Red'}]
df = pd.DataFrame(data)
df1 = df.replace(["Yes","No"],[1,0]).groupby("color").mean().stack().rename('% Yes').to_frame()
def add_line(ax, xpos, ypos):
line = plt.Line2D([xpos, xpos], [ypos + .1, ypos],
transform=ax.transAxes, color='gray')
line.set_clip_on(False)
ax.add_line(line)
def label_len(my_index,level):
labels = my_index.get_level_values(level)
return [(k, sum(1 for i in g)) for k,g in groupby(labels)]
def label_group_bar_table(ax, df):
ypos = -.1
scale = 1./df.index.size
for level in range(df.index.nlevels)[::-1]:
pos = 0
for label, rpos in label_len(df.index,level):
lxpos = (pos + .5 * rpos)*scale
ax.text(lxpos, ypos, label, ha='center', transform=ax.transAxes)
add_line(ax, pos*scale, ypos)
pos += rpos
add_line(ax, pos*scale , ypos)
ypos -= .1
colorlist = ['green','red']
cp = sns.color_palette(colorlist)
ax = sns.barplot(x=df1.index, y='% Yes', hue = df1.index.get_level_values(0), data=df1, palette=cp)
#Below 2 lines remove default labels
ax.set_xticklabels('')
ax.set_xlabel('')
label_group_bar_table(ax, df1)
输出:
关于python - 使用groupby和pandas数据框中的多列从字符串数据创建条形图,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/51532581/