经过很多尝试之后,我开始将R脚本迁移到Python。我在R中的大部分工作都涉及数据帧,而且我正在使用pandas包中的DataFrame对象。在我的脚本中,我需要读取一个csv文件并将数据导入到DataFrame对象中。接下来,我需要将十六进制值转换为标记为DATA的列,再转换为按位数据,然后创建16个新列,每列一个。

我在文件test.txt中的示例输入数据如下所示,


  前缀,测试,区域,行,颜色,数据
  
  6_6,READ,0,0,0,BFED
  
  6_6,读取,0,1,0,BB7D
  
  6_6,READ,0,2,0,FFF7
  
  6_6,READ,0,3,0,E7FF
  
  6_6,READ,0,4,0,FBF8
  
  6_6,READ,0,5,0,DE75
  
  6_6,READ,0,6,0,DFFE


我的python脚本test.py如下,

import glob

import pandas as pd

import numpy as np

fname = 'test.txt'

df = pd.read_csv(fname, comment="#")

dfs = df[df.TEST == 'READ']

# function to convert the hexstring into a binary string

def hex2bin(hstr):

    return bin(int(hstr,16))[2:]


# convert the hexstring in column DATA to binarystring ROWDATA

dfs['BINDATA'] = dfs['DATA'].apply(hex2bin)

# get rid of the column DATA

del dfs['DATA']


当我运行此脚本并检查对象dfs时,得到以下信息:


  前缀测试区行COL BINDATA
  
  0 6_6读取0 0 0 1011111111101101
  
  1 6_6读取0 1 0 1011101101111101
  
  2 6_6读取0 2 0 1111111111110111
  
  3 6_6读取0 3 0 1110011111111111
  
  4 6_6读取0 4 0 1111101111111000
  
  5 6_6读取0 5 0 1101111001110101
  
  6 6_6读取0 6 0 1101111111111110
  
  
    
      
    
  


所以现在我不确定如何将名为BINDATA的列拆分为16个新列(可以命名为B0,B0,B2,....,B15)。任何帮助将不胜感激。

感谢和问候,

Derric。

最佳答案

我不知道它是否可以做得更简单(没有for循环),但这可以解决问题:

for i in range(16):
    dfs['B'+str(i)] = dfs['BINDATA'].str[i]


系列的str属性提供对某些作用在每个元素上的矢量化字符串方法的访问(请参阅文档:http://pandas.pydata.org/pandas-docs/stable/basics.html#vectorized-string-methods)。在这种情况下,我们只需索引字符串即可访问不同的字符。
这给了我:

In [20]: dfs
Out[20]:
            BINDATA B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
0  1011111111101101  1  0  1  1  1  1  1  1  1  1   1   0   1   1   0   1
1  1011101101111101  1  0  1  1  1  0  1  1  0  1   1   1   1   1   0   1
2  1111111111110111  1  1  1  1  1  1  1  1  1  1   1   1   0   1   1   1
3  1110011111111111  1  1  1  0  0  1  1  1  1  1   1   1   1   1   1   1
4  1111101111111000  1  1  1  1  1  0  1  1  1  1   1   1   1   0   0   0
5  1101111001110101  1  1  0  1  1  1  1  0  0  1   1   1   0   1   0   1
6  1101111111111110  1  1  0  1  1  1  1  1  1  1   1   1   1   1   1   0


如果希望它们作为整数而不是字符串,则可以在for循环中添加.astype(int)



编辑:另一种方法(oneliner,但您必须在第二步中更改列名称):

In [34]: splitted = dfs['BINDATA'].apply(lambda x: pd.Series(list(x)))

In [35]: splitted.columns = ['B'+str(x) for x in splitted.columns]

In [36]: dfs.join(splitted)
Out[36]:
            BINDATA B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
0  1011111111101101  1  0  1  1  1  1  1  1  1  1   1   0   1   1   0   1
1  1011101101111101  1  0  1  1  1  0  1  1  0  1   1   1   1   1   0   1
2  1111111111110111  1  1  1  1  1  1  1  1  1  1   1   1   0   1   1   1
3  1110011111111111  1  1  1  0  0  1  1  1  1  1   1   1   1   1   1   1
4  1111101111111000  1  1  1  1  1  0  1  1  1  1   1   1   1   0   0   0
5  1101111001110101  1  1  0  1  1  1  1  0  0  1   1   1   0   1   0   1
6  1101111111111110  1  1  0  1  1  1  1  1  1  1   1   1   1   1   1   0

关于python - 如何将数据框列拆分为多列,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/18034361/

10-12 16:30
查看更多