我从包含 30 万行的数据集中获得以下数据框:
CustomerID Revenue
0 17850.0 15.30
1 17850.0 11.10
2 13047.0 17.85
3 13047.0 17.85
4 17850.0 20.34
5 13047.0 12.60
6 13047.0 12.60
7 13047.0 31.80
8 17850.0 20.34
9 17850.0 15.30
10 13047.0 9.90
11 13047.0 30.00
12 13047.0 31.80
13 12583.0 40.80
14 12583.0 39.60
15 13047.0 14.85
16 13047.0 14.85
17 12583.0 15.60
18 12583.0 45.00
19 12583.0 70.80
CustomerID 值成批重复。例如,包含在前 2 行中的 CustomerID 值 17850 稍后可能会在数据集中的某个点再次出现。
我正在尝试按相同的客户 ID 对行的子集进行分组,并总结该组的收入。我想要做的数据帧转换应该是这样的:
CustomerID TotalRevenue
0 17850.0 26.40
1 13047.0 35.70
2 17850.0 20.34
3 13047.0 57.0
4 17850.0 35.64
5 13047.0 71.7
6 12583.0 80.4
7 13047.0 29.7
8 12583.0 131.4
问题是,如果我使用 groupby 方法,它将所有具有相同 CustomerID 值的行分组。因此,通过这种方式,它将整个数据帧中的所有 17850 个 CustomerID 值组合在一起,而不仅仅是一组前 2 行,然后是一系列其他 CustomerID 值。
将非常感谢一些帮助如何使用 Pandas 做到这一点。谢谢
最佳答案
df.groupby(['CustomerID',df.CustomerID.diff().ne(0).cumsum()],sort=False)['Revenue'].sum().rename_axis(['CustomerID','GID']).reset_index().drop('GID',axis=1)
输出:
CustomerID Revenue
0 17850.0 26.40
1 13047.0 35.70
2 17850.0 20.34
3 13047.0 57.00
4 17850.0 35.64
5 13047.0 71.70
6 12583.0 80.40
7 13047.0 29.70
8 12583.0 131.40
关于python - 使用 Pandas 在 Python 中对数据帧的行子集进行分组,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/45285371/