假设我有以下熊猫数据框:
df = pd.DataFrame({'name':['Dave','Lisa','John',Lisa','Simon','Simon','Simon','Simon','Lisa','Dave','Dave','John','Lisa'],
'date': ['2015-01-31 07:14:39','2014-12-16 22:50:55','2015-04-12 23:29:11','2015-04-08 17:57:29','2015-01-30 03:51:12','2015-02-20 10:33:48','2014-12-15 23:54:03','2014-12-16 19:53:53','2014-12-18 00:15:02','2015-04-01 21:36:55','2015-04-13 23:25:55','2015-02-18 14:10:40','2015-02-27 04:56:33']})
数据帧1
date name
0 2015-01-31 07:14:39 Dave
1 2014-12-16 22:50:55 Lisa
2 2015-04-12 23:29:11 John
3 2015-04-08 17:57:29 Lisa
4 2015-01-30 03:51:12 Simon
5 2015-02-20 10:33:48 Simon
6 2014-12-15 23:54:03 Simon
7 2014-12-16 19:53:53 Simon
8 2014-12-18 00:15:02 Lisa
9 2015-04-01 21:36:55 Dave
10 2015-04-13 23:25:55 Dave
11 2015-02-18 14:10:40 John
12 2015-02-27 04:56:33 Lisa
数据框2
name datemax
0 Dave 2015-04-13 23:25:55
1 John 2015-04-12 23:29:11
2 Lisa 2015-04-08 17:57:29
3 Simon 2015-02-20 10:33:48
其中“ date”和“ datemax”列填充有datetime对象。
我需要在DATAFRAME1中按“名称”分组,随机选择一个日期,但我希望此选择的日期在第二个数据帧(DATAFRAME2)中该名称的“ datemax”之前。
我正在处理的实际数据框比本示例中的实际数据框大得多,因此我需要一种快速的方法来完成此操作。
最佳答案
首先,我将剔除所有不符合该条件的日期:
In [11]: df.groupby("name")["date"].transform(lambda x: df2a.loc[x.name, "datemax"])
Out[11]:
0 2015-04-13 23:25:55
1 2015-04-08 17:57:29
2 2015-04-12 23:29:11
3 2015-04-08 17:57:29
4 2015-02-20 10:33:48
5 2015-02-20 10:33:48
6 2015-02-20 10:33:48
7 2015-02-20 10:33:48
8 2015-04-08 17:57:29
9 2015-04-13 23:25:55
10 2015-04-13 23:25:55
11 2015-04-12 23:29:11
12 2015-04-08 17:57:29
Name: date, dtype: datetime64[ns]
In [12]: df["date"] < df.groupby("name")["date"].transform(lambda x: df2a.loc[x.name, "datemax"])
Out[12]:
0 True
1 True
2 False
3 False
4 True
5 False
6 True
7 True
8 True
9 True
10 False
11 True
12 True
Name: date, dtype: bool
In [13]: df_old = df[df["date"] < df.groupby("name")["date"].transform(lambda x: df2a.loc[x.name, "datemax"])]
In [14]: df_old
Out[14]:
date name
0 2015-01-31 07:14:39 Dave
1 2014-12-16 22:50:55 Lisa
4 2015-01-30 03:51:12 Simon
6 2014-12-15 23:54:03 Simon
7 2014-12-16 19:53:53 Simon
8 2014-12-18 00:15:02 Lisa
9 2015-04-01 21:36:55 Dave
11 2015-02-18 14:10:40 John
12 2015-02-27 04:56:33 Lisa
现在,它变成一个容易得多的问题:pick a random row by name:
df_old.groupby("name").agg(lambda x: x.iloc[np.random.randint(0,len(x))])
In [21]: df_old.groupby("name").agg(lambda x: x.iloc[np.random.randint(0,len(x))])
Out[21]:
date
name
Dave 2015-04-01 21:36:55
John 2015-02-18 14:10:40
Lisa 2014-12-16 22:50:55
Simon 2014-12-15 23:54:03
In [22]: df_old.groupby("name").agg(lambda x: x.iloc[np.random.randint(0,len(x))])
Out[22]:
date
name
Dave 2015-01-31 07:14:39
John 2015-02-18 14:10:40
Lisa 2014-12-18 00:15:02
Simon 2014-12-16 19:53:53
关于python - 每组具有 bool 条件的Pandas数据框随机行选择,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/34299672/