假设这是我的输入数据:
data = [("France", "Paris", "Male", "1"),
("France", "Paris", "Female", "6"),
("France", "Nice", "Male", "2"),
("France", "Nice", "Female", "7"),
("Germany", "Berlin", "Male", "3"),
("Germany", "Berlin", "Female", "8"),
("Germany", "Munchen", "Male", "4"),
("Germany", "Munchen", "Female", "9"),
("Germany", "Koln", "Male", "5"),
("Germany", "Koln", "Female", "10")]
我想把它放到这样的数据框中:
Country City Sex
Male Female
France Paris 1 6
Nice 2 7
Germany Berlin 3 8
Munchen 4 9
Koln 5 10
第一部分很简单:
df = pd.DataFrame(data, columns=["country", "city", "sex", "count"])
df = df.set_index(["country", "city"])
给我输出:
sex count
country city
France Paris Male 1
Paris Female 6
Nice Male 2
Nice Female 7
Germany Berlin Male 3
Berlin Female 8
Munchen Male 4
Munchen Female 9
Koln Male 5
Koln Female 10
所以行是可以的,但是现在我想把“sex”列中的值放入一个列多索引中。有没有可能,如果有,怎么办?
最佳答案
将Sex
列添加到list
中的set_index
并调用unstack
:
df = df.set_index(["country", "city",'sex']).unstack()
#data cleaning - remove columns name sex and rename column count
df = df.rename_axis((None, None),axis=1).rename(columns={'count':'Sex'})
print (df)
Sex
Female Male
country city
France Nice 7 2
Paris 6 1
Germany Berlin 8 3
Koln 10 5
Munchen 9 4
关于python - Pandas 数据框-行和列的多索引?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/46296112/