我在Windows上运行Python 2.7。
我有一个大的文本文件(2 GB),涉及500多封电子邮件。文件没有显式文件类型,格式为:
email_message#: 1
email_message_sent: 10/10/1991 02:31:01
From: tomf@abc.com| Tom Foo |abc company|
To: adee@abc.com| Alex Dee |abc company|
To: benfor12@xyz.com| Ben For |xyz company|
email_message#: 2
email_message_sent: 10/12/1991 01:28:12
From: timt@abc.com| Tim Tee |abc company|
To: tomf@abc.com| Tom Foo |abc company|
To: adee@abc.com| Alex Dee |abc company|
To: benfor12@xyz.com| Ben For|xyz company|
email_message#: 3
email_message_sent: 10/13/1991 12:01:16
From: benfor12@xyz.com| Ben For |xyz company|
To: tomfoo@abc.com| Tom Foo |abc company|
To: t212@123.com| Tatiana Xocarsky |numbers firm |
...
如您所见,每个电子邮件都有以下相关数据:
1)发送时间
2)发送邮件的电子邮件地址
3)发送人姓名
4)为其工作的公司
5)收到电子邮件的每个电子邮件地址
6)收到电子邮件的每个人的姓名
7)收到电子邮件的每个人的公司
在文本文件中有50万封以上的电子邮件,电子邮件可以有多达16千个收件人。在电子邮件中,没有关于他们如何称呼工作人员或公司的模式。
我想取这个大文件并在
python
中操作它,使它最终成为Pandas
Dataframe
。我希望pandas
dataframe
的格式与下面excel
的屏幕截图类似:编辑
我的解决方案是编写一个“解析器”,它接受这个文本文件并读取每一行,将每一行中的文本分配给
pandas
dataframe
的特定列。我打算写一些像下面这样的东西。有人能确认这是正确的执行方式吗?我想确保我没有丢失内置的
pandas
函数或其他module
函数。#connect to object
data = open('.../Emails', 'r')
#build empty dataframe
import pandas as pd
df = pd.DataFrame()
#function to read lines of the object and put pieces of text into the
# correct column of the dataframe
for line in data:
n = data.readline()
if n.startswith("email_message#:"):
#put a slice of the text into a dataframe
elif n.startswith("email_message_sent:"):
#put a slice of the text into a dataframe
elif n.startswith("From:"):
#put slices of the text into a dataframe
elif n.startswith("To:"):
#put slices of the text into a dataframe
最佳答案
我忍不住发痒,所以这是我的方法。
from __future__ import unicode_literals
import io
import pandas as pd
from pandas.compat import string_types
def iter_fields(buf):
for l in buf:
yield l.rstrip('\n\r').split(':', 1)
def iter_messages(buf):
it = iter_fields(buf)
k, v = next(it)
while True:
n = int(v)
_, v = next(it)
date = pd.Timestamp(v)
_, v = next(it)
from_add, from_name, from_comp = v.split('|')[:-1]
k, v = next(it)
to = []
while k == 'To':
to_add, to_name, to_comp = v.split('|')[:-1]
yield (n, date, from_add[1:], from_name[1:-1], from_comp,
to_add[1:], to_name[1:-1], to_comp)
k, v = next(it)
if not hasattr(filepath_or_buffer, read):
filepath_or_buffer
def _read_email_headers(buf):
columns=['email_message#', 'email_message_sent',
'from_address', 'from_name', 'from_company',
'to_address', 'to_name', 'to_company']
return pd.DataFrame(iter_messages(buf), columns=columns)
def read_email_headers(path_or_buf):
close_buf = False
if isinstance(path_or_buf, string_types):
path_or_buf = io.open(path_or_buf)
close_buf = True
try:
return _read_email_headers(path_or_buf)
finally:
if close_buf:
path_or_buf.close
以下是您将如何使用它:
df = read_email_headers('.../data_file')
只要用文件的路径调用它,就有了数据帧。
现在,以下内容仅用于测试目的。你这样做并不是为了在现实生活中处理你的实际数据。
由于我(或随机StackOverflow读取器)没有您的文件副本,我必须使用字符串来伪造它:
text = '''email_message#: 1
email_message_sent: 10/10/1991 02:31:01
From: tomf@abc.com| Tom Foo |abc company|
To: adee@abc.com| Alex Dee |abc company|
To: benfor12@xyz.com| Ben For |xyz company|
email_message#: 2
email_message_sent: 10/12/1991 01:28:12
From: timt@abc.com| Tim Tee |abc company|
To: tomf@abc.com| Tom Foo |abc company|
To: adee@abc.com| Alex Dee |abc company|
To: benfor12@xyz.com| Ben For|xyz company|'''
然后我可以创建一个类似文件的对象并将其传递给函数:
df = read_email_headers(io.StringIO(text))
print(df.to_string())
email_message# email_message_sent from_address from_name from_company to_address to_name to_company
0 1 1991-10-10 02:31:01 tomf@abc.com Tom Foo abc company adee@abc.com Alex Dee abc company
1 1 1991-10-10 02:31:01 tomf@abc.com Tom Foo abc company benfor12@xyz.com Ben For xyz company
2 2 1991-10-12 01:28:12 timt@abc.com Tim Tee abc company tomf@abc.com Tom Foo abc company
3 2 1991-10-12 01:28:12 timt@abc.com Tim Tee abc company adee@abc.com Alex Dee abc company
4 2 1991-10-12 01:28:12 timt@abc.com Tim Tee abc company benfor12@xyz.com Ben Fo xyz company
或者,如果我想使用一个实际的文件:
with io.open('test_file.txt', 'w') as f:
f.write(text)
df = read_email_headers('test_file.txt')
print(df.to_string()) # Same output as before.
但是,同样,您不必这样做就可以对数据使用函数。只要用文件路径调用它。
关于python - 从文本格式读取数据到Python Pandas数据框,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/35158954/