我有一个时间序列数据,说机读如下(说)
df['machine_r'] = [1,2,1,5,3,4,5,1,2,3,4,5,7,8,1,2.....]
如何更改数据框,如下所示
If data in dataframe <= 25 percentile, value = 0.25,
if 25p < data <=50p value = 0.50,
if 50p<data <= 75p, value = 0.75,
if data>75p , value = 1
我试过了
p25 = df['machine_r'].quantile(0.25) ## p25 is 25 percentile
p50 = df['machine_r'].quantile(0.5)
p75 = df['machine_r'].quantile(0.8)
p100 = df['machine_r'].quantile(1)
bins = [-100,p25,p50,p75,p100]
labels = [0.25, 0.5,0.75,1]
df['machine_r'] = pd.cut(df['copper'], bins=bins,labels=labels)
但它返回0、0.25、0.5、0.75、1作为分类值,但我需要将它们作为浮点数进行进一步分析。怎么做到呢?
最佳答案
您可以通过astype
将其强制转换为浮动形式:
df['new'] = pd.cut(df['machine_r'], bins=bins,labels=labels).astype(float)
更好的是使用
qcut
,如提到的Sandeep Kadapa一样:df['new'] = pd.qcut(x=df.machine_r, q=[0, .25, .5, .8, 1.], labels=labels).astype(float)
print (df)
machine_r new
0 1 0.25
1 2 0.50
2 1 0.25
3 5 0.75
4 3 0.50
5 4 0.75
6 5 0.75
7 1 0.25
8 2 0.50
9 3 0.50
10 4 0.75
11 5 0.75
12 7 1.00
13 8 1.00
14 1 0.25
15 2 0.50
print (df.dtypes)
machine_r int64
new float64
dtype: object
关于python - 如何在Pandas中的DataFrame中对数据进行装箱,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/53237197/