我有成千上万个要处理的XML文件,它们具有相似的格式,但父名称不同且父位数不同。
通过书籍,谷歌,教程以及只是尝试代码,我已经能够提取所有这些数据。例如,参见:Parsing xml to pandas data frame throws memory errorDynamic search through xml attributes using lxml and xpath in python

但是,我意识到我提取的数据很差,每个父级都重复了一个子级“Time”。

这就是我想要得到的。

Time   blah   abc
1200   100   2
1300   30    4
1400   70    2

这就是我所知道的。但是我当前的方法很笨拙(我将在示例XML下面显示)
    child      Time   grandchild
0     blah     1200    100
1     blah     1300    30
...
n-2   abc      1200    2
n-1   abc      1300    4
n     abc      1400    2

XML格式范例
<outer>
   <inner>
      <parent name = "blah" id = "1">
         <child Time = "1200">
            <grandchild>100</grandchild>
         </child>
         <child Time = "1300">
            <grandchild>30</grandchild>
         </child>
         <child Time = "1400">
            <grandchild>70</grandchild>
         </child>
      </parent>
      <parent name = "abc" id = "2">
         <child Time = "1200">
            <grandchild>2</grandchild>
         </child>
         <child Time = "1300">
            <grandchild>4</grandchild>
         </child>
         <child Time = "1400">
            <grandchild>2</grandchild>
         </child>
      </parent>
      <parent name = "1234" id = "7734">
         <other> 12 </other>
      </parent>
   </inner>
</outer>

这是我获得输出的方法:
from lxml import etree, objectify
from pandas import *
dTime=[]
dparent = []
dgrandchild=[]
for df in root.xpath('/*/*/*/parent/child'):
    dparent.append(df.getparent().attrib['name'])
    ## Iterate over attributes of time for specific parent
    for attrib in df.attrib:
    dTime.append(df.attrib[attrib])
        ## grandchild is a child of time, and iterate
        subfields = df.getchildren()
        for subfield in subfields:
         dgrandchild.append(subfield.text)
df=DataFrame({'Parent': dparent,'Time':dTime,'grandchild':dgrandchld})

我可以采用此输出并重新调整它的形状,但这似乎效率低下,而且方法笨拙。

我想我需要一些味道:
#this does not work
data = []
for elem in root.xpath('/*/*/*/parent/child'):
   elem_data = {}
   for attrib in elem.attrib:
       elem_data['Time'] = elem.attrib[attrib])
   for child in elem.getchildren():
       elem_data[getparent().attrib['name'])] = child.text
       data.append(elem_data)
ndata = DataFrame(data)

最佳答案

我建议先解析为一个DataFrame,类似于已经进行的解析(有关实现,请参见下文),然后根据需要进行调整。

然后,您正在寻找 pivot :

In [11]: df
Out[11]:
  child  Time  grandchild
0  blah  1200         100
1  blah  1300          30
2   abc  1200           2
3   abc  1300           4
4   abc  1400           2

In [12]: df.pivot('Time', 'child', 'grandchild')
Out[12]:
child  abc  blah
Time
1200     2   100
1300     4    30
1400     2   NaN

我建议首先使用parse from a file并将所需的内容放入元组列表中:
from lxml import etree
root = etree.parse(file_name)

parents = root.getchildren()[0].getchildren()

In [21]: elems = [(p.attrib['name'], int(c.attrib['Time']), int(gc.text))
                      for p in parents
                      for c in p
                      for gc in c]

In [22]: elems
Out[22]:
[('blah', 1200, 100),
 ('blah', 1300, 30),
 ('blah', 1400, 70),
 ('abc', 1200, 2),
 ('abc', 1300, 4),
 ('abc', 1400, 2)]

对于多个文件,您甚至可以以更长的列表理解力对其进行重击。除非您有大量的xmls(这里files是xmls的列表),否则这应该不会太慢...
elems = [(p.attrib['name'], int(c.attrib['Time']), int(gc.text))
            for f in files
            for p in etree.parse(f).getchildren()[0].getchildren()
            for c in p
            for gc in c]

将它们放在DataFrame中:
In [23]: pd.DataFrame(elems, columns=['child', 'Time', 'grandchild'])
Out[23]:
  child  Time grandchild
0  blah  1200        100
1  blah  1300         30
2  blah  1400         70
3   abc  1200          2
4   abc  1300          4
5   abc  1400          2

然后做枢轴。 :)

10-06 06:48
查看更多