我试图用熊猫填充ascii文件中时间序列数据中的缺失点。我认为其他事情还可以,但是即使最初有数据,第一行还是用nan填充。
我的数据样本是:

"2011-08-26 00:00:00",1155179,3.232,23.7,3.281,0.386,25.27,111.5665,28.92,29.83,19.13,0,111.5,13.02,29.77,345.7
"2011-08-26 00:00:30",1155180,3.289,20.44,2.153,0.222,25.25,111.5735,28.94,29.82,19.53,0,111.5,13.02,29.79,342.4
                                    .
                                    .


"2011-08-26 23:59:30",1155297,12.62,28.06,3.162,1.356,24.3,111.4614,28.65,29.84,19.53,0,111.4,13.06,29.50,350.1


我使用如下代码:

t1 = np.genfromtxt(INPUT,dtype=None,delimiter=',',usecols=[0])
start = t1[0].strip('\'"')
end = t1[-1].strip('\'"')
data=pd.read_csv(INPUT,sep=',',index_col=[0],parse_dates=[0])
index = pd.date_range(start,end,freq="30S")
df = data
sk_f = df.reindex(index)


因此,使用此代码,我想读取第一列的第一和最后一个字符串,并将它们设置为索引,以填充表示为nan的可能缺失点。但是,问题在于结果也填充了第一列,如下所示:

2011-08-26 00:00:00,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan

2011-08-26 00:00:30,1155180,3.289,20.44,2.153,0.222,25.25,111.5735,28.94,29.82,19.53,0,111.5,13.02,29.79,342.4
                                    .
                                    .


2011-08-26 23:59:30,1155297,12.62,28.06,3.162,1.356,24.3,111.4614,28.65,29.84,19.53,0,111.4,13.06,29.50,350.1


这意味着即使原始文件中有数据,第一行也被意外填充。从第二行开始,一切正常,并且填写丢失的数据似乎也可以。我试图找到原因。老实说,我还找不到原因。
任何想法或帮助将不胜感激。
谢谢,
以撒

最佳答案

我认为您可以通过genfromtxt省略读取文件并仅尝试read_csv,然后为min方法找到maxreindex日期。

或使用resample

import pandas as pd
import numpy as np
import io

temp=u""""2011-08-26 00:00:00",1155179,3.232,23.7,3.281,0.386,25.27,111.5665,28.92,29.83,19.13,0,111.5,13.02,29.77,345.7
"2011-08-26 00:00:30",1155180,3.289,20.44,2.153,0.222,25.25,111.5735,28.94,29.82,19.53,0,111.5,13.02,29.79,342.4
"2011-08-26 23:59:30",1155297,12.62,28.06,3.162,1.356,24.3,111.4614,28.65,29.84,19.53,0,111.4,13.06,29.50,350.1"""

#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), sep=",", index_col=[0], parse_dates=[0], header=None)
print df
                          1       2      3      4      5      6         7   \
0
2011-08-26 00:00:00  1155179   3.232  23.70  3.281  0.386  25.27  111.5665
2011-08-26 00:00:30  1155180   3.289  20.44  2.153  0.222  25.25  111.5735
2011-08-26 23:59:30  1155297  12.620  28.06  3.162  1.356  24.30  111.4614

                        8      9      10  11     12     13     14     15
0
2011-08-26 00:00:00  28.92  29.83  19.13   0  111.5  13.02  29.77  345.7
2011-08-26 00:00:30  28.94  29.82  19.53   0  111.5  13.02  29.79  342.4
2011-08-26 23:59:30  28.65  29.84  19.53   0  111.4  13.06  29.50  350.1


 

start = df.index.min()
end = df.index.max()
print start
2011-08-26 00:00:00
print end
2011-08-26 23:59:30

index = pd.date_range(start,end,freq="30S")
sk_f = df.reindex(index)
print sk_f.head()
                          1      2      3      4      5      6         7   \
2011-08-26 00:00:00  1155179  3.232  23.70  3.281  0.386  25.27  111.5665
2011-08-26 00:00:30  1155180  3.289  20.44  2.153  0.222  25.25  111.5735
2011-08-26 00:01:00      NaN    NaN    NaN    NaN    NaN    NaN       NaN
2011-08-26 00:01:30      NaN    NaN    NaN    NaN    NaN    NaN       NaN
2011-08-26 00:02:00      NaN    NaN    NaN    NaN    NaN    NaN       NaN

                        8      9      10  11     12     13     14     15
2011-08-26 00:00:00  28.92  29.83  19.13   0  111.5  13.02  29.77  345.7
2011-08-26 00:00:30  28.94  29.82  19.53   0  111.5  13.02  29.79  342.4
2011-08-26 00:01:00    NaN    NaN    NaN NaN    NaN    NaN    NaN    NaN
2011-08-26 00:01:30    NaN    NaN    NaN NaN    NaN    NaN    NaN    NaN
2011-08-26 00:02:00    NaN    NaN    NaN NaN    NaN    NaN    NaN    NaN




print df.resample('30S', fill_method='ffill').head()
                          1      2      3      4      5      6         7   \
0
2011-08-26 00:00:00  1155179  3.232  23.70  3.281  0.386  25.27  111.5665
2011-08-26 00:00:30  1155180  3.289  20.44  2.153  0.222  25.25  111.5735
2011-08-26 00:01:00  1155180  3.289  20.44  2.153  0.222  25.25  111.5735
2011-08-26 00:01:30  1155180  3.289  20.44  2.153  0.222  25.25  111.5735
2011-08-26 00:02:00  1155180  3.289  20.44  2.153  0.222  25.25  111.5735

                        8      9      10  11     12     13     14     15
0
2011-08-26 00:00:00  28.92  29.83  19.13   0  111.5  13.02  29.77  345.7
2011-08-26 00:00:30  28.94  29.82  19.53   0  111.5  13.02  29.79  342.4
2011-08-26 00:01:00  28.94  29.82  19.53   0  111.5  13.02  29.79  342.4
2011-08-26 00:01:30  28.94  29.82  19.53   0  111.5  13.02  29.79  342.4
2011-08-26 00:02:00  28.94  29.82  19.53   0  111.5  13.02  29.79  342.4

10-04 20:55
查看更多