对于我的实验,我有一个格式化的csv文件,看起来像矩阵[NxM],其中N = 40个周期总数(时间戳),M = 1440个像素。对于每个周期,我都有1440个像素值,对应于1440个像素。如下所示:

timestamps[row_index] | feature1  | feature2 | ... | feature1439 | feature1440 |
-----------------------------------------------------------------
       1              |  1.00     |   0.32   |   0.30   |   0.30  |   0.30   |
       2              |  0.35     |   0.33   |   0.30   |   0.30  |   0.30   |
       3              |  1.00     |   0.33   |   0.30   |   0.30  |   0.30   |
      ...             |   ....    |   ....   |   ....   |   ....  |   ....   |
                      | -1.00     |   0.26   |   0.30   |   0.30  |   0.30   |
                      |   0.67    |   0.03   |   0.30   |   0.30  |   0.30   |
       30             |   0.75    |   0.42   |   0.30   |   0.30  |   0.30   |
________________________________________________________________________________
      31              |  -0.36    |   0.42   |   0.30   |   0.30  |   0.30   |
      ...             |   ....    |   ....   |   ....   |   ....  |   ....   |
      40              |   1.00    |   0.34   |   0.30   |   0.30  |  -1.00   |





我想将数据集分为训练集和测试集,这样:

火车设置包含[1-30]个时间戳信息

测试集包含[31-40]个时间戳信息

问题是,在训练NN之后,我可能无法获得正确的连续绘图,这很可能是由于我通过train_test_split使用的数据拆分技术不良,但从未通过TimeSeriesSplit尝试过以下操作:

trainX, testX, trainY, testY = train_test_split(trainX,trainY, test_size=0.2 , shuffle=False)


考虑到我已经使用shuffle=False并期望将数据末尾的0.2视为测试数据,并且可以正确地绘制它们,但仍然无法访问被视为测试数据的循环数,因此当我从0开始绘制!而不是继续训练数据的最后一个周期!

我想知道是否最好将数据传递给pd.DataFrame并尝试基于此post通过pd.Timestamp切片数据!它有帮助还是不必要?

更新-完整代码:
我的列标签遵循以下模式,只是预测1440列中的960列:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.layers import Dense , Activation , BatchNormalization
from keras.layers import Dropout
from keras.layers import LSTM,SimpleRNN
from keras.models import Sequential
from keras.optimizers import Adam, RMSprop

data_train = pd.read_csv("D:\train.csv", header=None)
#select interested columns to predict 980 out of 1440
j=0
index=[]
for i in range(1439):
    if j==2:
        j=0
        continue
    else:
        index.append(i)
        j+=1

Y_train= data_train[index]
data_train = data_train.values
print("data_train size: {}".format(Y_train.shape))


创造历史

def create_dataset(dataset,data_train,look_back=1):
    dataX,dataY = [],[]
    print("Len:",len(dataset)-look_back-1)

    for i in range(len(dataset)-look_back-1):
        a = dataset[i:(i+look_back), :]
        dataX.append(a)
        dataY.append(data_train[i + look_back,  :])
    return np.array(dataX), np.array(dataY)

look_back = 10
trainX,trainY = create_dataset(data_train,Y_train, look_back=look_back)
#testX,testY = create_dataset(data_test,Y_test, look_back=look_back)
trainX, testX, trainY, testY = train_test_split(trainX,trainY, test_size=0.2)
print("train size: {}".format(trainX.shape))
print("train Label size: {}".format(trainY.shape))
print("test size: {}".format(testX.shape))
print("test Label size: {}".format(testY.shape))



Len: 29
train size: (23, 10, 1440)
train Label size: (23, 960)
test size: (6, 10, 1440)
test Label size: (6, 960)


RNN,LSTM,GRU实现类似

# create and fit the SimpleRNN model
model_RNN = Sequential()
model_RNN.add(SimpleRNN(units=1440, input_shape=(trainX.shape[1], trainX.shape[2])))
model_RNN.add(Dense(960))
model_RNN.add(BatchNormalization())
model_RNN.add(Activation('tanh'))
model_RNN.compile(loss='mean_squared_error', optimizer='adam')
callbacks = [
    EarlyStopping(patience=10, verbose=1),
    ReduceLROnPlateau(factor=0.1, patience=3, min_lr=0.00001, verbose=1)]
hist_RNN=model_RNN.fit(trainX, trainY, epochs =50, batch_size =20,validation_data=(testX,testY),verbose=1, callbacks=callbacks)


最后,我期望下面的输出图:

Y_RNN_Test_pred=model_RNN.predict(testX)
test_RNN= pd.DataFrame.from_records(Y_RNN_Test_pred)
test_RNN.to_csv('New/ttest_RNN_history.csv', sep=',', header=None, index=None)
test_MSE=mean_squared_error(testY, Y_RNN_Test_pred)

plt.plot(trainY[:,0],'b-',label='Train data')
plt.plot(testY[:,0],'c-',label='Test data')
plt.plot(Y_RNN_Test_pred[:,0],'r-',label='prediction')

最佳答案

索引只有一个小问题。

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

df = pd.read_csv('Train.csv', header=None)

# I'm not sure what the label-column is, so i use df[0]
# and exclude this colums in the data via df.loc[:,df.columns!=0]
trainX,testX,trainY,testY = train_test_split(df.loc[:,df.columns!=0],df[0], test_size=0.2, shuffle=False)

plt.plot(trainY)
plt.plot(testY)


python - 如何为带有清晰时间戳的时间序列数据构建数据框?-LMLPHP

看起来还好:-)

所以现在我们要预测:

from sklearn.svm import SVR
reg = SVR(C=1, gamma='auto')
reg.fit(trainX, trainY)
predY = reg.predict(testX)

plt.plot(trainY)
plt.plot(testY)
plt.plot(predY)


python - 如何为带有清晰时间戳的时间序列数据构建数据框?-LMLPHP

索引错误:-(
让我们解决这个问题,例如使用testY的索引:

plt.plot(trainY)
plt.plot(testY)
plt.plot(testY.index,predY)


python - 如何为带有清晰时间戳的时间序列数据构建数据框?-LMLPHP

编辑

更为通用的解决方案是采用火车数据集长度的范围并将其设置为索引,与testYpredY相同,只是起始值不同(长度为trainY

trainY.index = range(len(trainY))
testY.index = range(len(trainY), len(trainY)+len(testY))
#Maybe convert to DataFrame first
predY = pd.DataFrame(predY)
predY.index = range(len(trainY), len(trainY)+len(predY))

plt.plot(trainY)
plt.plot(testY)
plt.plot(predY)


根据您的新代码进行编辑

trainY.index = range(len(trainY))
testY.index = range(len(trainY), len(trainY)+len(testY))
test_RNN.index = range(len(trainY), len(trainY)+len(test_RNN))

plt.plot(trainY,'b-',label='Train data')
plt.plot(testY,'c-',label='Test data')
plt.plot(test_RNN,'r-',label='prediction')


编辑2

好的,让我们一步一步地完成代码:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from keras.layers import Dense , Activation , BatchNormalization
from keras.layers import Dropout
from keras.layers import LSTM,SimpleRNN
from keras.models import Sequential
from keras.optimizers import Adam, RMSprop

data_train = pd.read_csv("Train.csv", header=None)
#select interested columns to predict 980 out of 1440


实际上,您仅选择960列进行预测,请参见下文。

#j=0
#index=[]
#for i in range(1439):
#    if j==2:
#        j=0
#        continue
#    else:
#        index.append(i)
#        j+=1

idx2 = [i for i in list(range(1440)) if i%3!=2]



如果我理解正确的循环,则只想取两个值中的每三个。因此,列表理解idx2 = [i for i in list(range(1440)) if i%3!=2]更快。您可能还希望包含所有列?因此,请使用1440代替1439

Y_train= data_train[index]
data_train = data_train.values
print("data_train size: {}".format(Y_train.shape))


在您的代码中,Y_train的形状为(40,960)。所以,您想预测690个变量,对吗?如果是这样,“干净”的方法是从data_train中删除​​那些列(并创建一个X_train):

index2 = [i for i in list(range(1440)) if i%3==2]
X_train = data_train[index2]


现在让我们检查形状:

print("X_train size: {}".format(X_train.shape))
print("Y_train size: {}".format(Y_train.shape))

>X_train size: (40, 480)
>Y_train size: (40, 960)


似乎正确... ;-)

我在下一部分做了一些修改:
-您无需在范围内减去1for i in range(len(dataset)-look_back):。与某些其他编程语言不同,Python不包含最后一个值,因此例如,如果您执行list(range(0,3)),则列表将为[0,1,2]。这些是您遗漏的10个值(最后一个)...
-我还从values取得了Y_train

def create_dataset(dataset,data_train,look_back=1):
    dataX,dataY = [],[]

    for i in range(len(dataset)-look_back):
        a = dataset[i:(i+look_back), :]
        dataX.append(a)
        dataY.append(data_train[i+look_back, :])
    return np.array(dataX), np.array(dataY)

look_back = 10
trainX,trainY = create_dataset(X_train.values, Y_train.values, look_back=look_back)
trainX, testX, trainY, testY = train_test_split(trainX,trainY, test_size=0.2)


print("train size: {}".format(trainX.shape))
print("train Label size: {}".format(trainY.shape))
print("test size: {}".format(testX.shape))
print("test Label size: {}".format(testY.shape))

>train size: (24, 10, 480)
>train Label size: (24, 960)
>test size: (6, 10, 480)
>test Label size: (6, 960)


我必须在训练from keras.callbacks import EarlyStopping, ReduceLROnPlateau中添加两个导入,因此:

from keras.callbacks import EarlyStopping, ReduceLROnPlateau
# create and fit the SimpleRNN model
model_RNN = Sequential()
model_RNN.add(SimpleRNN(units=1440, input_shape=(trainX.shape[1], trainX.shape[2])))
model_RNN.add(Dense(960))
model_RNN.add(BatchNormalization())
model_RNN.add(Activation('tanh'))
model_RNN.compile(loss='mean_squared_error', optimizer='adam')
callbacks = [
    EarlyStopping(patience=10, verbose=1),
    ReduceLROnPlateau(factor=0.1, patience=3, min_lr=0.00001, verbose=1)]
hist_RNN=model_RNN.fit(trainX, trainY, epochs =50, batch_size =20,validation_data=(testX,testY),verbose=1, callbacks=callbacks)


做出预测(未修改):

Y_RNN_Test_pred=model_RNN.predict(testX)
test_RNN= pd.DataFrame.from_records(Y_RNN_Test_pred)
#test_RNN.to_csv('New/ttest_RNN_history.csv', sep=',', header=None, index=None)
test_MSE=mean_squared_error(testY, Y_RNN_Test_pred)


并按照上面的说明在x轴上绘制带有修改的数据:

x_start =  range(look_back, look_back+len(trainY))
x_train_start = range(look_back + len(trainY), look_back + len(trainY)+len(testY))
x_pred_start = range(look_back + len(trainY), look_back +len(trainY)+len(Y_RNN_Test_pred))
plt.plot(x_start, trainY[:,0],'b-',label='Train data')
plt.plot(x_train_start, testY[:,0],'c-',label='Test data')
plt.plot(x_pred_start, Y_RNN_Test_pred[:,0],'r-',label='prediction')


python - 如何为带有清晰时间戳的时间序列数据构建数据框?-LMLPHP

10-02 07:54
查看更多