我正在尝试使用python将来自英国公司House csv文件的数据批量加载到PostgreSQL中。
我将每一行数据转换成一个dict列表,然后使用一个unnest语句将数据解压成一个大容量sql语句,下面是我正在做的一个示例(源代码中还有很多字段)。。。

def buildDict(row)
    clean_name = row[0].decode('utf-8').upper()
    country_code = lookups.getCountryCodeFromName(row[14])
    if len(country_code) > 2:
        country_code = None
        insert_dict = {
            'companyname': row[0],
            'companynumber': row[1],
            'regaddress_careof': row[2],
            'regaddress_pobox': row[3],
            'dissolutiondate': row[13],
            }

            # convert 'None' and '' strings to None
            for k, v in six.iteritems(insert_dict):
                insert_dict[k] = set_to_null(v)


def fastInsert(data):
    sql='''
        INSERT INTO uk_data.companies_house(
          companyname,
          companynumber,
          regaddress_careof,
          regaddress_pobox,
          dissolutiondate
          )
          SELECT
          unnest( %(companyname)s ),
          unnest( %(companynumber)s ),
          unnest( %(regaddress_careof)s ),
          unnest( %(regaddress_pobox)s ),
          unnest( %(dissolutiondate)s )
          ;
    '''

    companyname=[str(r['companyname']) for r in data]
    companynumber=[str(r['companynumber']) for r in data]
    regaddress_careof=[str(r['regaddress_careof']) for r in data]
    regaddress_pobox=[str(r['regaddress_pobox']) for r in data]
    dissolutiondate=[datetime.strptime(r['dissolutiondate'], "%d/%m/%Y") if r['dissolutiondate'] else None for r in data]
    execute(sql,locals())


def execute(sql,params={}):
    with connect() as connection:
        with connection.cursor() as cursor:
            if params:
                cursor.execute(sql,params)
            else:
                cursor.execute(sql)

只要所有内容都转换为字符串,这段代码就可以正常工作,但是当我尝试将数据转换为日期时,每次a日期记录没有值时,我都会得到以下错误(注意,这个值被条件设置为None,所以应该加载到PostgreSQL中)。
Error could not determine polymorphic type because input has type "unknown"

我尝试在unnest语句中将类型转换为::DATE,如下所示:
sql='''
    INSERT INTO uk_data.companies_house(
      companyname,
      companynumber,
      regaddress_careof,
      regaddress_pobox,
      dissolutiondate
      )
      SELECT
      unnest( %(companyname)s ),
      unnest( %(companynumber)s ),
      unnest( %(regaddress_careof)s ),
      unnest( %(regaddress_pobox)s ),
      unnest( %(dissolutiondate)s )::DATE
      ;
'''

但这没用。一张本地人的照片显示了一条记录的以下内容:
('these are my locals: ', {'regaddress_posttown': ['LEEDS'], 'regaddress_addressline1': ['METROHOUSE 57 PEPPER ROAD'], 'regaddress_addressline2': ['HUNSLET'], 'regaddress_careof': ['None'], 'companystatus': ['Active'], 'companycategory': ['Private Limited Company'], 'companyname': ['! LTD'], 'countryoforigin': ['None'], 'regaddress_pobox': ['None'], 'regaddress_country': ['None'], 'dissolutiondate': None, 'regaddress_postcode': ['LS10 2RU'], 'regaddress_county': ['YORKSHIRE'], 'sql': '
        INSERT INTO uk_data.companies_house(
          companyname,
          companynumber,
          regaddress_careof,
          regaddress_pobox,
          regaddress_addressline1,
          regaddress_addressline2,
          regaddress_posttown,
          regaddress_county,
          regaddress_country,
          regaddress_postcode,
          companycategory,
          companystatus,
          countryoforigin,
          dissolutiondate
          )
          SELECT
          unnest( %(companyname)s ),
          unnest( %(companynumber)s ),
          unnest( %(regaddress_careof)s ),
          unnest( %(regaddress_pobox)s ),
          unnest( %(regaddress_addressline1)s ),
          unnest( %(regaddress_addressline2)s ),
          unnest( %(regaddress_posttown)s ),
          unnest( %(regaddress_county)s ),
          unnest( %(regaddress_country)s ),
          unnest( %(regaddress_postcode)s ),
          unnest( %(companycategory)s ),
          unnest( %(companystatus)s ),
          unnest( %(countryoforigin)s ),
          unnest( %(dissolutiondate)s )
          ;
    ', 'r': {'regaddress_posttown': 'LEEDS', 'regaddress_careof': None, 'companystatus': 'Active', 'companynumber': '08209948', 'regaddress_addressline1': 'METROHOUSE 57 PEPPER ROAD', 'regaddress_addressline2': 'HUNSLET', 'companycategory': 'Private Limited Company', 'companyname': '! LTD', 'countryoforigin': None, 'regaddress_pobox': None, 'regaddress_country': None, 'dissolutiondate': None, 'regaddress_postcode': 'LS10 2RU', 'regaddress_county': 'YORKSHIRE'}, 'data': [{'regaddress_posttown': 'LEEDS', 'regaddress_careof': None, 'companystatus': 'Active', 'companynumber': '08209948', 'regaddress_addressline1': 'METROHOUSE 57 PEPPER ROAD', 'regaddress_addressline2': 'HUNSLET', 'companycategory': 'Private Limited Company', 'companyname': '! LTD', 'countryoforigin': None, 'regaddress_pobox': None, 'regaddress_country': None, 'dissolutiondate': None, 'regaddress_postcode': 'LS10 2RU', 'regaddress_county': 'YORKSHIRE'}], 'companynumber': ['08209948']})

我不确定这是否相关,但我注意到,一旦从dict中取出局部变量,它们都会按如下方式放置在一个列表中:['None'],但是导致问题的日期变量(dissolutiondate)被作为一个真正的值给出。

最佳答案

好 啊。因此,问题是psycopg2和postgresql在处理数组时的交互方式,pscyopg中曾经存在一个错误,不允许将空值数组导入postgres,详情如下:
https://github.com/psycopg/psycopg2/issues/285
正如Vao Tsun指出的,解决方案是在每个unnest语句的强制转换中,它必须是显式的,但也必须在每个数据类型说明符之后包含[]括号。
在这里,我还错误地将变量转换为python中的字符串:

companyname=[str(r['companyname']) for r in data]

导致None值变成'None'值的字符串。
下面是正确代码的示例:
SELECT
          unnest( %(companyname)s::TEXT[] ),
          unnest( %(companynumber)s::TEXT[] ),
          unnest( %(regaddress_careof)s::TEXT[] ),
          unnest( %(regaddress_pobox)s::TEXT[] ),
          unnest( %(regaddress_addressline1)s::TEXT[] ),
          unnest( %(regaddress_addressline2)s::TEXT[] ),
          unnest( %(regaddress_posttown)s::TEXT[] ),
          unnest( %(regaddress_county)s::TEXT[] ),
          unnest( %(regaddress_country)s::TEXT[] ),
          unnest( %(regaddress_postcode)s::TEXT[] ),
          unnest( %(companycategory)s::TEXT[] ),
          unnest( %(companystatus)s::TEXT[] ),
          unnest( %(countryoforigin)s::TEXT[] ),
          unnest( %(dissolutiondate)s::TIMESTAMP[] ),


companyname=[(r['companyname']) for r in data]
    companynumber=[(r['companynumber']) for r in data]
    regaddress_careof=[(r['regaddress_careof']) for r in data]
    regaddress_pobox=[(r['regaddress_pobox']) for r in data]
    regaddress_addressline1=[(r['regaddress_addressline1']) for r in data]
    regaddress_addressline2=[(r['regaddress_addressline2']) for r in data]
    regaddress_posttown=[(r['regaddress_posttown']) for r in data]
    regaddress_county=[(r['regaddress_county']) for r in data]
    regaddress_country=[(r['regaddress_country']) for r in data]
    regaddress_postcode=[(r['regaddress_postcode']) for r in data]
    companycategory=[(r['companycategory']) for r in data]
    companystatus=[(r['companystatus']) for r in data]
    countryoforigin=[(r['countryoforigin']) for r in data]
    dissolutiondate=[datetime.strptime(r['dissolutiondate'], "%d/%m/%Y") if r['dissolutiondate'] else None for r in data]

09-30 23:49
查看更多