我们的一个ETL应用程序遇到了一个奇怪的问题。有效地,该过程打开一个游标以从一个DB中提取数据,执行一些转换,然后使用批处理插入将其插入到另一个DB中。

对于ETL中的所有表,我们的提交间隔设置为1000行。因此,在读取每个1k行的块并执行转换之后,我们将一个批量插入到目标数据库中(使用Java,Spring Batch,OJDBC7 v12.1.0.2)。

但是,某些表的运行速度很慢。我们首先确保已关闭FK。然后,我们检查以确保触发器已禁用(它们是)。我们添加了日志记录以获取每个批处理插入中的行(每个线程的最终插入除外为1000)。

最后,查询v$sql,似乎对于某些表,我们看到接近1000行/执行,这是我们期望的。但是,对于痛苦的表,它通常徘徊在之间!我们希望大多数表都在900s的高位,因为线程的最终提交可能没有完整的1k行,但是某些表上每次执行的行数非常低,这确实是一个难题。

一些宽表(超过100列)是有问题的,但其他表很好。一些高度分区(超过100个分区)的表速度较慢,但​​其他表很好。所以我很困惑。谁看过这个吗?我的想法不多了!

谢谢!

这是我们在v$sql中看到的内容(混淆了表名):

SELECT *
FROM
  (SELECT REGEXP_SUBSTR (sql_text, 'Insert into [^\(]*') sql_text,
    sql_id,
    TRUNC(
    CASE
      WHEN SUM (executions) > 0
      THEN SUM (rows_processed) / SUM (executions)
    END,2) rows_per_execution
  FROM v$sql
  WHERE parsing_schema_name = 'PFT010_RAPP_PRO'
  AND sql_text LIKE 'Insert into%'
  GROUP BY sql_text,
    sql_id
  )
ORDER BY rows_per_execution ASC;

SQL_STATEMENT                                   SQL_ID         ROWS_PER_EXECUTION
---------------------------------------------------------------------------------
Insert into C__PFT010.S_T___V_R_L_A_            agwu1dd1wr2ux     1.04
Insert into C__PFT010.S_T___G_L_A___T_          7ymw7jtdd9g53     1.25
Insert into C__PFT010.S_T___F_L_A_              7cynt9fmtpz83     1.44
Insert into C__PFT010.S_T___Q_L_A___A_          27v3fuj028cy6     1.57
Insert into C__PFT010.S_T___E_R_P_Y_A_P_S_A_    2t544j11a286z     1.80
Insert into C__PFT010.S_T___I_S_R_              anu8aac070sut     1.84
Insert into C__PFT010.S_T___R_C_R___T_T_        0ydz33s6guvcn     2.05
Insert into C__PFT010.S_T_R___D_R_P_Y_A_P_      7y76r10dmzqvh     2.14
Insert into C__PFT010.S_T___S_L_A___Y_T_S_S_    d7136fg9w033w     2.25
Insert into C__PFT010.S_T___R_C_R___T_T_        2pswt3cmp48s4     2.31
Insert into C__PFT010.S_T___F_R_P_Y_A_P_S_P_    170c7v23yyrms     2.46
Insert into C__PFT010.C_M_N_C___R_S_            fw3wbt4p08kx4     2.66
Insert into C__PFT010.T_A_H_N_T___E_A_Y_        dk5rwm58qqy8b     2.68
Insert into C__PFT010.O_G_L_A___N_O_            gtd4azc32gku4     3.05
Insert into C__PFT010.N_L_S_D___I_B_S_G_        a1a01vthwf2yk     3.15
Insert into C__PFT010.S_T___Q_L_A___A_          7ac6dqwb1jfyh     3.56
Insert into C__PFT010.S_T___J_P_M___A_A_        8n5z68bgkuan1     3.88
Insert into C__PFT010.S_T_R___F_R_P_Y_A_P_S_P   1r62s9qgjucy8     4.25
Insert into C__PFT010.L_A___W_E_S_I_            19rxcmgvct74c     4.28
Insert into C__PFT010.C___U___T_D_T_P_          fdzfdbpdzd18c     4.40
Insert into C__PFT010.S_T_R___U_T_A_S_E_        gs6z5szk9x1n2     4.61
Insert into C__PFT010.S_T_R___H_S_B_I_Y_L_S_    0zsz69pa3ahga     6.58
Insert into C__PFT010.C___F___U_R_P_T_          13xgutdszxab1     8.00
Insert into C__PFT010.S_T_R___J_P_M___A_A_      355gqx1sspdr0    20.19
Insert into C__PFT010.C___D___O___V_            4dmu2bqrra0fg    22.40
Insert into C__PFT010.S_T_R___Q_L_A___A_        dsx0nsrxkz5cf    36.14
Insert into C__PFT010.S_T___V_R_L_A___E_R_      2urs0mbjn3nm2   126.96
Insert into C__PFT010.S_S_C_S___E_A_L_S_G_      awq4fzkk3rsww   179.48
Insert into C__PFT010.S_S_D_S___C_I_I_Y_S_G_    7hpw0kv2z5nsh   417.87
Insert into C__PFT010.S_T_R___D_P_S___M_I_      cjgdmgfznapdk   502.36
Insert into C__PFT010.C___F___E_                6hv4smzmm4hx8   531.00
Insert into C__PFT010.N_L_S_E_R___R_            61zu9j25kgn2u   533.50
Insert into C__PFT010.S_T___B_P_S___A_T_R_      31xpaj7afk054   714.94
Insert into C__PFT010.S_T_R___C_L_A___O_G_V_    dx4mna12hdh9c   749.66
Insert into C__PFT010.S_T___C_P_S___D_R_S_      b7z4y1mruk714   784.56
Insert into C__PFT010.S_T___S_L_A___Y_T_S_S_    29qbqkzhmt83h   792.63
Insert into C__PFT010.A_H_C_R_T_                c6kmyt3a410ch   801.67
Insert into C__PFT010.S_T___X_P_S___H_N_        g6cbtus4bccm8   826.19
Insert into C__PFT010.S_T___K_R_B_T___T_T_      0xps4ddmw322h   873.36
Insert into C__PFT010.C___O___C_L___M_          fz91ju8jw22yc   928.90
Insert into C__PFT010.S_T___H_L_A___T_T_        44rh8722j51fm   982.16
Insert into C__PFT010.C___C_L_S_C_R_T_          4vpnstj8qxy80   991.75
Insert into C__PFT010.S_T___P_L_A___E_U_D_      fgunfbpddf2af   994.50
Insert into C__PFT010.S_T___A_S___I___O_S_      0d0x5ymp2y248   996.09
Insert into C__PFT010.S_T___K_R_B_T___T_T_      61rmgzvqrbudh   999.25
Insert into C__PFT010.S_T___D_P_S___M_I_        bu3hc03yugc8h   999.88
Insert into C__PFT010.L___R_E___E_L_R_C_P_2_00  bvrxzq2v3npc6   999.91
Insert into C__PFT010.N_L_S_G_A_T_S_N___R_C     7sj2ydm7m2z6u   999.96
Insert into C__PFT010.S_T___V_R_L_A___E_E_E     8n6nbsjfpvu70   999.98
Insert into C__PFT010.S_T___L_I_T_B_N_F_T       5b89j9um2jkuu   999.98
Insert into C__PFT010.S_T___D_P_S___M_I_        906jnw4jarsxk   999.98
Insert into C__PFT010.S_T___T_E_R_M_T           9a8vnhnbp5jpn  1000.00

更新:此时数据有点陈旧(所有快速线程都已完成),但是这里有一些带有SQL ID,执行计数和行/执行的计数。所有这些表都具有(或将具有)数千万行
SQL ID          Executions  Rows/Execution
agwu1dd1wr2ux   118043      1.04
anu8aac070sut   194768      1.84
dr8qxkcx1xybj   11635084    1.85
a37vqfjqcyd3j   4939754     2.36
8n5z68bgkuan1   2642091     3.95
4sps6y4bkkr6p   268739      13.77
5tdhpn96vpz6d   240227      166.85

其他SQL跟踪数据...:

这是一个工作良好的表格的插入物
PARSING IN CURSOR #139935830739792 len=315 dep=0 uid=845 oct=2 lid=845 tim=2116001679604 hv=581690290 ad='c168de130' sqlid='906jnw4jarsxk'
Insert into ___PFT010.S_T__A__P_S__E_A_L
 (A_A_D_ID, CREATE_DTM, DOC_TXN_ID, EFF_DT, EFF_END_DT, EFF_START_DT, EXTRACT_DT, G_O__A_D__F_G, MAINT_DTM, MAINT_USERID, P_R_O__E_A_L, P_R_O__R_L_, R_C_RD_T_P, S__ID, S_R_I_E__ID )
 values (:1 , :2 , :3 , :4 , :5 , :6 , :7 , :8 , :9 , :10 , :11 , :12 , :13 , :14 , :15  )
END OF STMT
PARSE #139935830739792:c=0,e=25,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=0,tim=2116001679603
WAIT #139935830739792: nam='SQL*Net more data from client' ela= 72 driver id=675562835 #bytes=3 p3=0 obj#=-1 tim=2116001679871
WAIT #139935830739792: nam='db file sequential read' ela= 551 file#=99 block#=78343664 blocks=1 obj#=1255124 tim=2116001680643
* * * * * * * * * * * * * * * * * *
* * * a bunch more of these
* * * * * * * * * * * * * * * * * *
WAIT #139935830739792: nam='db file sequential read' ela= 750 file#=99 block#=66416561 blocks=1 obj#=1255124 tim=2116001788121
WAIT #139935830739792: nam='db file sequential read' ela= 176 file#=99 block#=45513746 blocks=1 obj#=1255124 tim=2116001787117
WAIT #139935830739792: nam='db file sequential read' ela= 750 file#=99 block#=66416561 blocks=1 obj#=1255124 tim=2116001788121
* * * * * * * * * * * * * * * * * *
* * * r=1000, indicating 1000 rows were written
* * * * * * * * * * * * * * * * * *
EXEC #139935830739792:c=57991,e=109295,p=131,cr=69,cu=3313,mis=0,r=1000,dep=0,og=1,plh=0,tim=2116001788944
STAT #139935830739792 id=1 cnt=0 pid=0 pos=1 obj=0 op='LOAD TABLE CONVENTIONAL  SAT1_AD_PRSN_EMAIL (cr=69 pr=131 pw=0 time=109260 us)'
XCTEND rlbk=0, rd_only=0, tim=2116001789025
CLOSE #139935830739792:c=0,e=12,dep=0,type=1,tim=2116016169474

这是一个令人讨厌的东西。这次,它只在执行中得到1行
PARSING IN CURSOR #139935830737584 len=520 dep=0 uid=845 oct=2 lid=845 tim=2116016176184 hv=1904916192 ad='97e96dc98' sqlid='355gqx1sspdr0'
Insert into ___PFT010.S_TE_R_BJ_P_M__D_T_
 (A_A_D_ID, CREATE_DTM, DOC_TXN_ID, EFF_END_DT, EFF_START_DT, ERR_CD, ERR_FIELD, EXTRACT_DT, MAINT_USERID, P_M__A_R_I_T_A_T, P_M__A_T, P_M__C_P_I_T_A_T, P_M__C_T_H_P_AMT, P_M__E_F_DT, P_M__N_G_A_R__A_T, P_M__N_N_C_P_I_T_A_T, P_M__O_T_F_E_A_T, P_M__P_I_B_L_A_T, P_M__T_P, R_C_RD_T_P, S__ID, S_R_I_E__ID, T_A_S_I__D_, Z_R__P_M__I_D )
 values (:1 , :2 , :3 , :4 , :5 , :6 , :7 , :8 , :9 , :10 , :11 , :12 , :13 , :14 , :15 , :16 , :17 , :18 , :19 , :20 , :21 , :22 , :23 , :24  )
END OF STMT
PARSE #139935830737584:c=0,e=62,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=0,tim=2116016176183
PARSE #139935830738688:c=0,e=14,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,plh=140787661,tim=2116016176703
EXEC #139935830738688:c=0,e=49,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,plh=140787661,tim=2116016176780
FETCH #139935830738688:c=0,e=38,p=0,cr=3,cu=0,mis=0,r=0,dep=1,og=4,plh=140787661,tim=2116016176837
CLOSE #139935830738688:c=0,e=4,dep=1,type=3,tim=2116016176862
* * * * * * * * * * * * * * * * * *
* * * r=1, indicating only 1 row affected by execution
* * * * * * * * * * * * * * * * * *
EXEC #139935830737584:c=999,e=1065,p=0,cr=4,cu=5,mis=1,r=1,dep=0,og=1,plh=0,tim=2116016177301
STAT #139935830737584 id=1 cnt=0 pid=0 pos=1 obj=0 op='LOAD TABLE CONVENTIONAL  SATERR_BJ_PYMT_DATA (cr=1 pr=0 pw=0 time=50 us)'
XCTEND rlbk=0, rd_only=0, tim=2116016177362
WAIT #139935830737584: nam='log file sync' ela= 396 buffer#=92400 sync scn=2454467328 p3=0 obj#=-1 tim=2116016177846
WAIT #139935830737584: nam='SQL*Net message to client' ela= 0 driver id=675562835 #bytes=1 p3=0 obj#=-1 tim=2116016177877
WAIT #139935830737584: nam='SQL*Net message from client' ela= 1045 driver id=675562835 #bytes=1 p3=0 obj#=-1 tim=2116016178938
CLOSE #139935830737584:c=0,e=4,dep=0,type=0,tim=2116016178981

这是同一张表,只有34行而不是1行。不一致的事实是最让我讨厌的地方
PARSING IN CURSOR #139935830737584 len=520 dep=0 uid=845 oct=2 lid=845 tim=2116016169849 hv=1904916192 ad='97e96dc98' sqlid='355gqx1sspdr0'
Insert into ___PFT010.S_TE_R_BJ_P_M__D_T_
 (A_A_D_ID, CREATE_DTM, DOC_TXN_ID, EFF_END_DT, EFF_START_DT, ERR_CD, ERR_FIELD, EXTRACT_DT, MAINT_USERID, P_M__A_R_I_T_A_T, P_M__A_T, P_M__C_P_I_T_A_T, P_M__C_T_H_P_AMT, P_M__E_F_DT, P_M__N_G_A_R__A_T, P_M__N_N_C_P_I_T_A_T, P_M__O_T_F_E_A_T, P_M__P_I_B_L_A_T, P_M__T_P, R_C_RD_T_P, S__ID, S_R_I_E__ID, T_A_S_I__D_, Z_R__P_M__I_D )
 values (:1 , :2 , :3 , :4 , :5 , :6 , :7 , :8 , :9 , :10 , :11 , :12 , :13 , :14 , :15 , :16 , :17 , :18 , :19 , :20 , :21 , :22 , :23 , :24  )
END OF STMT
PARSE #139935830737584:c=0,e=326,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=1,plh=0,tim=2116016169848
PARSE #139935830738688:c=0,e=19,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,plh=140787661,tim=2116016170242
EXEC #139935830738688:c=0,e=59,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,plh=140787661,tim=2116016170329
FETCH #139935830738688:c=0,e=44,p=0,cr=3,cu=0,mis=0,r=0,dep=1,og=4,plh=140787661,tim=2116016170393
CLOSE #139935830738688:c=0,e=3,dep=1,type=3,tim=2116016170421
* * * * * * * * * * * * * * * * * *
* * * r=34, indicating only 34 row affected by execution. WHAT IS HAPPENING?!?!
* * * * * * * * * * * * * * * * * *
EXEC #139935830737584:c=5000,e=4592,p=0,cr=11,cu=48,mis=1,r=34,dep=0,og=1,plh=0,tim=2116016174513
STAT #139935830737584 id=1 cnt=0 pid=0 pos=1 obj=0 op='LOAD TABLE CONVENTIONAL  SATERR_BJ_PYMT_DATA (cr=8 pr=0 pw=0 time=3648 us)'
XCTEND rlbk=0, rd_only=0, tim=2116016174622
WAIT #139935830737584: nam='log file sync' ela= 684 buffer#=92313 sync scn=2454467326 p3=0 obj#=-1 tim=2116016175452
WAIT #139935830737584: nam='SQL*Net message to client' ela= 1 driver id=675562835 #bytes=1 p3=0 obj#=-1 tim=2116016175551
WAIT #139935830737584: nam='SQL*Net message from client' ela= 481 driver id=675562835 #bytes=1 p3=0 obj#=-1 tim=2116016176058
CLOSE #139935830737584:c=0,e=6,dep=0,type=0,tim=2116016176107

最佳答案

好的,这很有趣,很遗憾,这个答案只能解决99%的问题...

首先,我们通过查看绑定变量来确定所绑定的参数类型正在翻转,并且每次发生时,我们都将执行上一条语句并解析一条新语句(尽管仅从executeBatch()中发出单个PreparedStatement命令) 。因此,我们最终在跟踪日志中看到了这一点:

Row #  Bind :1         Bind :2         Bind :3         Bind :4         Bind :5
-----  --------------  --------------  --------------  --------------  --------------
--parse--
    1  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    2  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    3  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    4  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
--execute & parse--
    5  VARCHAR2(128)   VARCHAR2(32)    TIMESTAMP       CLOB            VARCHAR2(2000)
--execute & parse--
    6  VARCHAR2(128)   NUMBER          TIMESTAMP       VARCHAR2(32)    VARCHAR2(2000)
--execute & parse--
    7  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    8  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    9  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
   10  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
--execute & parse--
   11  VARCHAR2(2000)  NUMBER          VARCHAR2(32)    CLOB            VARCHAR2(2000)
--execute & parse--
   12  VARCHAR2(2000)  NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
   13  VARCHAR2(2000)  NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
--execute--

经过更多的挖掘,我们确定JDBC无法像使用非null值那样自动为我们确定null对象的数据类型。当列是一致的(总是为null或始终填充)时,这不是问题,但是当数据中存在可变性时,这是残酷的。

由于我们是从文件加载的,因此我们没有源数据类型,但是幸运的是我们DID能够获取目标数据类型(应该匹配),因此我们可以在设置参数时指定它PreparedStatement

该更改进行了一些重大改进,但最终仍然看到以下内容:
Row #  Bind :1         Bind :2         Bind :3         Bind :4         Bind :5
-----  --------------  --------------  --------------  --------------  --------------
--parse--
    1  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    2  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    3  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    4  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    5  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
--execute & parse--
    6  VARCHAR2(128)   NUMBER          TIMESTAMP       VARCHAR2(32)    VARCHAR2(2000)
--execute & parse--
    7  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    8  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
    9  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
   10  VARCHAR2(128)   NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
--execute & parse--
   11  VARCHAR2(2000)  NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
   12  VARCHAR2(2000)  NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
   13  VARCHAR2(2000)  NUMBER          TIMESTAMP       CLOB            VARCHAR2(2000)
--execute--

绝对可以改进,但是我们没有修复CLOB,并且看到VARCHAR2的大小有时会扩大。经过更多研究之后,我们偶然发现了this thread about High Version Count due to bind_mismatch,听起来很有希望。数据良好且一致的表毫无问题,但是诸如电子邮件地址之类的长度变化的字段会对性能造成严重破坏。因此,我们运行以下命令强制将VARCHAR2绑定为4000:
ALTER SYSTEM SET EVENTS '10503 trace name context forever, level 2001';

之后,我们再次尝试并得到以下信息:
Row #  Bind :1         Bind :2         Bind :3         Bind :4         Bind :5
-----  --------------  --------------  --------------  --------------  --------------
--parse--
    1  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
    2  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
    3  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
    4  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
    5  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
--execute & parse--
    6  VARCHAR2(40000) NUMBER          TIMESTAMP       VARCHAR2(32)    VARCHAR2(4000)
--execute & parse--
    7  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
    8  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
    9  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
   10  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
   11  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
   12  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
   13  VARCHAR2(40000) NUMBER          TIMESTAMP       CLOB            VARCHAR2(4000)
--execute--

现在我们几乎完美了,但是当我们得到一个空VARCHAR2时,我们无法弄清楚如何阻止JDBC绑定CLOB。幸运的是,我们只有几个带有可为空的CLOB列的表,因此我们极大地提高了性能,并减少了更改绑定的影响。但是我中肯定有一部分人希望拿到最后的1%...有什么建议吗?

09-11 19:59
查看更多