。。
我将NaN
值替换为与列对应的某个大值,以此开始这个过程。
然后我要删除文本数据并将其转换为数字数据。
现在,当我尝试对分类数据执行status
操作时,我得到了错误。我试图将输入逐个输入到hedge_value
构造函数中,但对于每一列,我都会得到相同的错误。
基本上,我的最终目标是预测返回值,但由于这个原因,我陷入了数据预处理部分。?
。
代码
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
test_data = pd.read_csv('test.csv')
train_data = pd.read_csv('train.csv')
# Replacing Nan values here
train_data['status']=train_data['status'].fillna(2.0)
train_data['hedge_value']=train_data['hedge_value'].fillna(2.0)
train_data['indicator_code']=train_data['indicator_code'].fillna(2.0)
train_data['portfolio_id']=train_data['portfolio_id'].fillna('PF99999999')
train_data['desk_id']=train_data['desk_id'].fillna('DSK99999999')
train_data['office_id']=train_data['office_id'].fillna('OFF99999999')
x_train = train_data.iloc[:, :-1].values
y_train = train_data.iloc[:, 17].values
# =============================================================================
# from sklearn.preprocessing import Imputer
# imputer = Imputer(missing_values="NaN", strategy="mean", axis=0)
# imputer.fit(x_train[:, 15:17])
# x_train[:, 15:17] = imputer.fit_transform(x_train[:, 15:17])
#
# imputer.fit(x_train[:, 12:13])
# x_train[:, 12:13] = imputer.fit_transform(x_train[:, 12:13])
# =============================================================================
# Encoding categorical data, i.e. Text data, since calculation happens on numbers only, so having text like
# Country name, Purchased status will give trouble
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
x_train[:, 0] = labelencoder_X.fit_transform(x_train[:, 0])
x_train[:, 1] = labelencoder_X.fit_transform(x_train[:, 1])
x_train[:, 2] = labelencoder_X.fit_transform(x_train[:, 2])
x_train[:, 3] = labelencoder_X.fit_transform(x_train[:, 3])
x_train[:, 6] = labelencoder_X.fit_transform(x_train[:, 6])
x_train[:, 8] = labelencoder_X.fit_transform(x_train[:, 8])
x_train[:, 14] = labelencoder_X.fit_transform(x_train[:, 14])
# =============================================================================
# import numpy as np
# x_train[:, 3] = x_train[:, 3].reshape(x_train[:, 3].size,1)
# x_train[:, 3] = x_train[:, 3].astype(np.float64, copy=False)
# np.isnan(x_train[:, 3]).any()
# =============================================================================
# =============================================================================
# from sklearn.preprocessing import StandardScaler
# sc_X = StandardScaler()
# x_train = sc_X.fit_transform(x_train)
# =============================================================================
onehotencoder = OneHotEncoder(categorical_features=[0,1,2,3,6,8,14])
x_train = onehotencoder.fit_transform(x_train).toarray() # Replace Country Names with One Hot Encoding.
错误
Traceback (most recent call last):
File "<ipython-input-4-4992bf3d00b8>", line 58, in <module>
x_train = onehotencoder.fit_transform(x_train).toarray() # Replace Country Names with One Hot Encoding.
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 2019, in fit_transform
self.categorical_features, copy=True)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 1809, in _transform_selected
X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 453, in check_array
_assert_all_finite(array)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 44, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
最佳答案
在发布问题后,我再次查看了数据集,发现另一个列有NaN
。。所以,使用下面的代码,我发现我漏掉了三列。当我可以使用这个函数时,我正在视觉上搜索NaN
。在处理这些新的NaN
s之后,代码工作正常。
pd.isnull(train_data).sum() > 0
结果
portfolio_id False
desk_id False
office_id False
pf_category False
start_date False
sold True
country_code False
euribor_rate False
currency False
libor_rate True
bought True
creation_date False
indicator_code False
sell_date False
type False
hedge_value False
status False
return False
dtype: bool