我有一个CSV文件,其行如下所示:
ID,98.4,100M,55M,65M,75M,100M,75M,65M,100M,98M,100M,100M,92M,0#,0N#,
我可以用它读
#!/usr/bin/env python
import pandas as pd
import sys
filename = sys.argv[1]
df = pd.read_csv(filename)
给定特定列,我想按ID拆分行,然后输出每个ID的均值和标准差。
我的第一个问题是,如何从数字中删除所有非数字部分,例如“ 100M”和“ 0N#”,它们分别应为100和0。
我也尝试遍历相关标头并使用
df[header].replace(regex=True,inplace=True,to_replace=r'\D',value=r'')
如Pandas DataFrame: remove unwanted parts from strings in a column中所建议。
但是,这将98.4更改为984。
最佳答案
使用str.extract
:
In [356]:
import io
import pandas as pd
t="""ID,98.4,100M,55M,65M,75M,100M,75M,65M,100M,98M,100M,100M,92M,0#,0N#"""
df = pd.read_csv(io.StringIO(t), header=None)
df
Out[356]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 \
0 ID 98.4 100M 55M 65M 75M 100M 75M 65M 100M 98M 100M 100M 92M
14 15
0 0# 0N#
In [357]:
for col in df.columns[2:]:
df[col] = df[col].str.extract(r'(\d+)').astype(int)
df
Out[357]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 ID 98.4 100 55 65 75 100 75 65 100 98 100 100 92 0 0
如果您有浮点数,则可以使用以下正则表达式:
In [379]:
t="""ID,98.4,100.50M,55.234M,65M,75M,100M,75M,65M,100M,98M,100M,100M,92M,0#,0N#"""
df = pd.read_csv(io.StringIO(t), header=None)
df
Out[379]:
0 1 2 3 4 5 6 7 8 9 10 11 \
0 ID 98.4 100.50M 55.234M 65M 75M 100M 75M 65M 100M 98M 100M
12 13 14 15
0 100M 92M 0# 0N#
In [380]:
for col in df.columns[2:]:
df[col] = df[col].str.extract(r'(\d+\.?\d+)').astype(np.float)
df
Out[380]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 ID 98.4 100.5 55.234 65 75 100 75 65 100 98 100 100 92 NaN NaN
因此
(\d+\.?\d+)
查找包含\d+
1个或多个数字且带\.?
可选小数点并在小数点后\d+
1个或多个数字的组编辑
OK编辑了我的正则表达式模式:
In [408]:
t="""Name,97.7,0A,0A,65M,0A,100M,5M,75M,100M,90M,90M,99M,90M,0#,0N#"""
df = pd.read_csv(io.StringIO(t), header=None)
df
Out[408]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 \
0 Name 97.7 0A 0A 65M 0A 100M 5M 75M 100M 90M 90M 99M 90M 0#
15
0 0N#
In [409]:
for col in df.columns[2:]:
df[col] = df[col].str.extract(r'(\d+\.*\d*)').astype(np.float)
df
Out[409]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 Name 97.7 0 0 65 0 100 5 75 100 90 90 99 90 0 0