我有一个CSV文件,其行如下所示:

ID,98.4,100M,55M,65M,75M,100M,75M,65M,100M,98M,100M,100M,92M,0#,0N#,


我可以用它读

#!/usr/bin/env python

import pandas as pd
import sys

filename = sys.argv[1]
df = pd.read_csv(filename)


给定特定列,我想按ID拆分行,然后输出每个ID的均值和标准差。

我的第一个问题是,如何从数字中删除所有非数字部分,例如“ 100M”和“ 0N#”,它们分别应为100和0。

我也尝试遍历相关标头并使用

df[header].replace(regex=True,inplace=True,to_replace=r'\D',value=r'')


Pandas DataFrame: remove unwanted parts from strings in a column中所建议。

但是,这将98.4更改为984。

最佳答案

使用str.extract

In [356]:
import io
import pandas as pd
t="""ID,98.4,100M,55M,65M,75M,100M,75M,65M,100M,98M,100M,100M,92M,0#,0N#"""
df = pd.read_csv(io.StringIO(t), header=None)
df

Out[356]:
   0     1     2    3    4    5     6    7    8     9    10    11    12   13  \
0  ID  98.4  100M  55M  65M  75M  100M  75M  65M  100M  98M  100M  100M  92M

   14   15
0  0#  0N#

In [357]:
for col in df.columns[2:]:
    df[col] = df[col].str.extract(r'(\d+)').astype(int)
df

Out[357]:
   0     1    2   3   4   5    6   7   8    9   10   11   12  13  14  15
0  ID  98.4  100  55  65  75  100  75  65  100  98  100  100  92   0   0


如果您有浮点数,则可以使用以下正则表达式:

In [379]:
t="""ID,98.4,100.50M,55.234M,65M,75M,100M,75M,65M,100M,98M,100M,100M,92M,0#,0N#"""
df = pd.read_csv(io.StringIO(t), header=None)
df

Out[379]:
   0     1        2        3    4    5     6    7    8     9    10    11  \
0  ID  98.4  100.50M  55.234M  65M  75M  100M  75M  65M  100M  98M  100M

     12   13  14   15
0  100M  92M  0#  0N#

In [380]:
for col in df.columns[2:]:
    df[col] = df[col].str.extract(r'(\d+\.?\d+)').astype(np.float)
df

Out[380]:
   0     1      2       3   4   5    6   7   8    9   10   11   12  13  14  15
0  ID  98.4  100.5  55.234  65  75  100  75  65  100  98  100  100  92 NaN NaN


因此(\d+\.?\d+)查找包含\d+ 1个或多个数字且带\.?可选小数点并在小数点后\d+ 1个或多个数字的组

编辑

OK编辑了我的正则表达式模式:

In [408]:
t="""Name,97.7,0A,0A,65M,0A,100M,5M,75M,100M,90M,90M,99M,90M,0#,0N#"""
df = pd.read_csv(io.StringIO(t), header=None)
df

Out[408]:
     0     1   2   3    4   5     6   7    8     9    10   11   12   13  14  \
0  Name  97.7  0A  0A  65M  0A  100M  5M  75M  100M  90M  90M  99M  90M  0#

    15
0  0N#

In [409]:
for col in df.columns[2:]:
    df[col] = df[col].str.extract(r'(\d+\.*\d*)').astype(np.float)
df

Out[409]:
     0     1   2   3   4   5    6   7   8    9   10  11  12  13  14  15
0  Name  97.7   0   0  65   0  100   5  75  100  90  90  99  90   0   0

08-19 21:17
查看更多