人工智能音频处理库—librosa(安装与使用)

序言

一、libsora安装

pypi

conda

source

二、librosa常用功能

核心音频处理函数

音频处理

频谱表示

幅度转换

时频转换

特征提取

绘图显示

三、常用功能代码实现

读取音频

提取特征

提取Log-Mel Spectrogram 特征

提取MFCC特征

绘图显示

绘制声音波形

绘制频谱图


序言

Librosa是一个用于音频、音乐分析、处理的python工具包,一些常见的时频处理、特征提取、绘制声音图形等功能应有尽有,功能十分强大。本文主要介绍librosa的安装与使用方法。


一、libsora安装

Librosa官网提供了多种安装方法,详细如下:

pypi

最简单的方法就是进行pip安装,可以满足所有的依赖关系,命令如下:

pip install librosa

conda

如果安装了Anaconda,可以通过conda命令安装:

conda install -c conda-forge librosa

source

直接使用源码安装,需要提前下载源码(https://github.com/librosa/librosa/releases/),通过下面命令安装:

tar xzf librosa-VERSION.tar.gz
cd librosa-VERSION/
python setup.py install

二、librosa常用功能

核心音频处理函数

这部分介绍了最常用的音频处理函数,包括音频读取函数load( ),重采样函数resample( ),短时傅里叶变换stft( ),幅度转换函数amplitude_to_db( )以及频率转换函数hz_to_mel( )等。这部分函数很多,详细可参考librosa官网 http://librosa.github.io/ librosa/core.html

音频处理

人工智能下的音频还能这样玩!!!!-LMLPHP

频谱表示

人工智能下的音频还能这样玩!!!!-LMLPHP

幅度转换

人工智能下的音频还能这样玩!!!!-LMLPHP

时频转换

人工智能下的音频还能这样玩!!!!-LMLPHP

特征提取

本部分列举了一些常用的频谱特征的提取方法,包括常见的Mel Spectrogram、MFCC、CQT等。函数详细信息可参考http:// librosa.github.io/librosa/feature.html

人工智能下的音频还能这样玩!!!!-LMLPHP

绘图显示

包含了常用的频谱显示函数specshow( ), 波形显示函数waveplot( ),详细信息请参考http://librosa.github.io/librosa/display. html

人工智能下的音频还能这样玩!!!!-LMLPHP


三、常用功能代码实现

1.读取音频

#导入库
import librosa
# # 读取音频
# Load a wav file
y, sr = librosa.load('./sample.wav')
print(y)
#Librosa默认的采样率是22050,如果需要读取原始采样率,需要设定参数sr=None:
print(sr)
y, sr = librosa.load('./sample.wav',sr=None)
#可见,'beat.wav'的原始采样率为16000。如果需要重采样,只需要将采样率参数sr设定为你需要的值:
print(sr)


y, sr = librosa.load('./sample.wav',sr=18000)
print(sr)

人工智能下的音频还能这样玩!!!!-LMLPHP


2.提取特征

提取Log-Mel Spectrogram 特征

Log-Mel Spectrogram特征是目前在语音识别和环境声音识别中很常用的一个特征,由于CNN在处理图像上展现了强大的能力,使得音频信号的频谱图特征的使用愈加广泛,甚至比MFCC使用的更多。在librosa中,Log-Mel Spectrogram特征的提取只需几行代码:

# # 提取特征
# Load a wav file
y, sr = librosa.load('./sample.wav', sr=None)
# extract mel spectrogram feature
melspec = librosa.feature.melspectrogram(y, sr, n_fft=1024, hop_length=512, n_mels=128)
# convert to log scale
logmelspec = librosa.power_to_db(melspec)
print(logmelspec.shape)

人工智能下的音频还能这样玩!!!!-LMLPHP

可见,Log-Mel Spectrogram特征是二维数组的形式,128表示Mel频率的维度(频域),100为时间帧长度(时域),所以Log-Mel Spectrogram特征是音频信号的时频表示特征。其中,n_fft指的是窗的大小,这里为1024;hop_length表示相邻窗之间的距离,这里为512,也就是相邻窗之间有50%的overlap;n_mels为mel bands的数量,这里设为128。


3.提取MFCC特征

MFCC特征是一种在自动语音识别和说话人识别中广泛使用的特征。关于MFCC特征的详细信息,有兴趣的可以参考博客http:// blog.csdn.net/zzc15806/article/details/79246716。在librosa中,提取MFCC特征只需要一个函数:

# # 提取MFCC特征
# extract mfcc feature
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
print(mfccs)
print(mfccs.shape)

人工智能下的音频还能这样玩!!!!-LMLPHP

关于mfcc,这里就不在赘述。

Librosa还有很多其他音频特征的提取方法,比如CQT特征、chroma特征等,在第二部分“librosa常用功能”给了详细的介绍。


4.绘图显示

4.1绘制声音波形

Librosa有显示声音波形函数waveplot( ):

# # 绘图显示
import librosa.display
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
plt.figure()
librosa.display.waveplot(y, sr)
plt.title('sample wavform')
plt.show()

人工智能下的音频还能这样玩!!!!-LMLPHP


4.2绘制频谱图

Librosa有显示频谱图波形函数specshow( ):

# # 绘制频谱图
melspec = librosa.feature.melspectrogram(y, sr, n_fft=1024, hop_length=512, n_mels=128)
logmelspec = librosa.power_to_db(melspec)
plt.figure()
librosa.display.specshow(logmelspec, sr=sr, x_axis='time', y_axis='mel')
plt.title('sample wavform')
plt.show()

人工智能下的音频还能这样玩!!!!-LMLPHP


将声音波形和频谱图绘制在一张图表中:

# # 将声音波形和频谱图绘制在一张图表中:
# extract mel spectrogram feature
melspec = librosa.feature.melspectrogram(y, sr, n_fft=1024, hop_length=512, n_mels=128)
# convert to log scale
logmelspec = librosa.power_to_db(melspec)
plt.figure()
# plot a wavform
plt.subplot(2, 1, 1)
librosa.display.waveplot(y, sr)
plt.title('sample wavform')
# plot mel spectrogram
plt.subplot(2, 1, 2)
librosa.display.specshow(logmelspec, sr=sr, x_axis='time', y_axis='mel')
plt.title('Mel spectrogram')
plt.tight_layout() #保证图不重叠
plt.show()

人工智能下的音频还能这样玩!!!!-LMLPHP

人工智能下的音频还能这样玩!!!!-LMLPHP

到这里,librosa的安装和简单使用就介绍完了。事实上,librosa远不止这些功能,关于librosa更多的使用方法还请大家参考librosa官网

正文结束!!!

08-21 14:21