题意:
有一个无向连通图,没有重边没有自环,并给出顶点的权值和边的权值
定义一条路径\(difficulty\)值为该路径上最大的点权乘上最大的边权
定义函数\(d(i,j)\)为\(i,j\)之间的所有中路径最小的\(difficulty\)值
求\(\sum_{i<j}d(i,j)\)
分析:
令\(minw(i,j)\)表示\(i,j\)之间的路径中最大边权的最小值
按照点权从小到大枚举点\(k\),然后按照Floyd算法那样逐个去更新:
\[minw(i,j)=min(minw(i,j), max(minw(i,k), minw(k,j)))
\]
\]
\[d(i,j)=min(d(i,j),minw(i,j) \cdot max(v_i, v_j, v_k))
\]
\]
#define REP(i, a, b) for(int i = a; i < b; i++)
#define SZ(a) ((int)a.size())
#define ALL(a) a.begin(), a.end()
typedef long long LL;
const LL INF = 1LL << 60;
typedef pair<int, int> PII;
const int maxn = 300 + 10;
LL minw[maxn][maxn], ans[maxn][maxn];
vector<PII> vertex;
class MinMaxMax {
public:
long long findMin(vector<int> a, vector<int> b, vector<int> w, vector<int> v) {
int n = SZ(v), m = SZ(a);
REP(i, 0, n) REP(j, 0, n) minw[i][j] = ans[i][j] = INF;
REP(i, 0, m) minw[a[i]][b[i]] = minw[b[i]][a[i]] = w[i];
REP(i, 0, n) vertex.emplace_back(v[i], i);
sort(ALL(vertex));
for(PII x : vertex) {
int k = x.second;
REP(i, 0, n) REP(j, 0, n) if(i != j) {
minw[i][j] = min(minw[i][j], max(minw[i][k], minw[k][j]));
if(minw[i][j] == INF) continue;
ans[i][j] = min(ans[i][j], minw[i][j] * max(v[i], max(v[j], v[k])));
}
}
LL res = 0;
REP(i, 0, n) REP(j, 0, i) res += ans[i][j];
return res;
}
};