题目描述
降雷皇哈蒙很喜欢雷电,他想找到神奇的电光。
哈蒙有n条导线排成一排,每条导线有一个电阻值,神奇的电光只能从一根导线传到电阻比它大的上面,而且必须从左边向右传导,当然导线不必是连续的。
哈蒙想知道电光最多能通过多少条导线,还想知道这样的方案有多少。
数据范围
对于20%的数据n<=10;
对于40%的数据n<=1000;
对于另外20%的数据type=0;
对于另外20%的数据保证最多能通过不超过100条导线;
对于100%的数据n<=100000,电阻值不超过100000。
=w=
首先第一问直接最长不下降子序列即可。
其中f[i]表示以a[i]结尾的最长不下降子序列最长是多少。
然后对于第二问而言,设g[i]表示要以a[i]结尾的最长不下降子序列的长度达到f[i]有多少种选法。
容易有g[i]=∑i−1j=1[f[j]==f[i]−1 and a[j]<a[i]]。
我们发现这个如果用数据结构来维护的话,需要维护两个条件。
那么就开n棵权值线段树,动态加边即可。
代码
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
const char* fin="hamon.in";
const char* fout="hamon.out";
const int inf=0x7fffffff;
const int maxn=100007,mo=123456789,maxtot=3000007;
int n,m,i,j,k;
int a[maxn],f[maxn],g[maxn];
int tmp,tmd,ans,ans1;
int c[maxn];
int rt[maxn],tot;
struct node{
int x;
int lson,rson;
}d[maxtot];
void change(int v,int v1){
for (;v<maxn;v+=v&-v) c[v]=max(c[v],v1);
}
int getmax(int v){
int k=0;
for (;v;v-=v&-v) k=max(k,c[v]);
return k;
}
void modify(int t,int l,int r,int v,int v1){
int mid=(l+r)/2;
if (l==r){
d[t].x+=v1;
return ;
}
if (v<=mid){
if (!d[t].lson) d[t].lson=++tot;
modify(d[t].lson,l,mid,v,v1);
}else{
if (!d[t].rson) d[t].rson=++tot;
modify(d[t].rson,mid+1,r,v,v1);
}
d[t].x=(d[d[t].lson].x+d[d[t].rson].x)%mo;
}
int getsum(int t,int l,int r,int v){
int mid=(l+r)/2;
if (!t || l>v) return 0;
if (r<=v) return d[t].x;
return (getsum(d[t].lson,l,mid,v)+getsum(d[t].rson,mid+1,r,v))%mo;
}
int main(){
freopen(fin,"r",stdin);
freopen(fout,"w",stdout);
scanf("%d%d",&n,&m);
for (i=1;i<=n;i++) scanf("%d",&a[i]),a[i]+=2,rt[i]=++tot;
for (i=1;i<=n;i++){
tmp=tmd=0;
tmp=getmax(a[i]-1);
if (m==1) tmd=getsum(rt[tmp],1,maxn-1,a[i]-1);
if (tmp){
f[i]=tmp+1;
g[i]=tmd;
}else f[i]=g[i]=1;
change(a[i],f[i]);
if (m==1) modify(rt[f[i]],1,maxn-1,a[i],g[i]);
if (ans<f[i]){
ans=f[i];
ans1=g[i];
}else if (ans==f[i]) ans1=(ans1+g[i])%mo;
}
printf("%d\n",ans);
if (m==1) printf("%d\n",ans1);
if (tot>=maxtot) printf("error\n");
return 0;
}
=o=
虽然这题我的解法非常暴力,但是反映了做题技巧啊:
当要满足两个条件时,考虑开若干棵线段树。