朗格拉日计算
Time Limit: 10 Sec Memory Limit: 128 MB
Description
Input
Output
仅一行一个整数表示答案。
Sample Input
5
3 2 5 4 1
3 2 5 4 1
Sample Output
4
HINT
Main idea
将一个排列围成一个环,每个点有一个值a[i],若顺时针三个点A、B、C 满足 a[A]<a[B]<a[C] 则可以统计答案,询问答案。
Solution
我们不考虑环,从序列考虑,显然可以统计的就是类似这种:123、231、312这个样子的。
我们考虑容斥,显然123这种是可以直接计算的,231就是xx1 - 321,312就是3xx - 321。
显然我们这样这样用树状数组统计一下 f[i] 表示 i 前面<a[i]的个数,然后就可以计算出:前面<a[i]的个数、前面>a[i]的个数、后面<a[i]的个数、后面>a[i]的个数。
然后这样暴力计算即可。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64;
const int ONE = ;
const int MOD = 1e9+; int n;
int a[ONE],f[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} s64 C(int n)
{
return (s64)n*(n-)/;
} namespace Bit
{
int C[ONE]; int lowbit(int x)
{
return x&-x;
} void Add(int R,int x)
{
for(int i=R;i<=n;i+=lowbit(i))
C[i]+=x;
} int Query(int R)
{
int res=;
for(int i=R;i>=;i-=lowbit(i))
res+=C[i];
return res;
}
} int pre_min(int i) {return f[i];}
int pre_max(int i) {return i--f[i];}
int suc_min(int i) {return a[i]--pre_min(i);}
int suc_max(int i) {return n-a[i]-pre_max(i);} int main()
{
n=get();
for(int i=;i<=n;i++) a[i]=get(); for(int i=;i<=n;i++)
{
Bit::Add(a[i],);
f[i] = Bit::Query(a[i]-);
} for(int i=;i<=n;i++)
{
Ans += (s64)pre_min(i) * suc_max(i);
Ans += C( pre_max(i) );
Ans += C( suc_min(i) );
Ans -= (s64) * pre_max(i) * suc_min(i);
} printf("%lld",Ans);
}