public <T> T getFieldValue(Object target, String fieldName, Class<T> typeName)
{
try {
Object fieldValue = FieldUtils.readField(target, fieldName, true);
return (T)fieldValue;
} catch (IllegalAccessException e) {
log.error("出错:实体类{}没有{}类型的{}属性字段!",target.getClass(),typeName.getSimpleName(),fieldName);
throw new RuntimeException(e);
}
}
用法1:
public Long getLongValue(Object target, String fieldName)
{
return getFieldValue(target,fieldName,Long.class);
}
以此类推,你也可以写出
public LocalDateTime getLocalDateTimeValue(Object target, String fieldName)
{
return getFieldValue(target,fieldName,LocalDateTime.class);
} public String getStringValue(Object target, String fieldName)
{
return getFieldValue(target,fieldName,String.class);
}
笔者的一个用法是在泛型方法中提取实体的属性值,做进一步计算
<R,T> 你的返回类型 processData(String label, String snapshotKey, Class<T> targetClass,
Predicate<? super T> filter, final Function<? super T, ? extends R> mapper)
{
if(filter == null)
{
//如果没有指定过滤表达式,给一个默认值
filter = (T entity)->{
LocalDateTime createTime = cacheService.getFieldValue(entity, "createTime", LocalDateTime.class);
return createTime.getMinute() % 10 == 0
&&createTime.getSecond() ==0;
};
}
Map<String,Object> resultMap = new HashMap<>();
Optional<SnmpNode> node1 = nodeMapping.values().stream().findFirst();
List<T> list = null;
if(node1.isPresent())
{
String ipAddr1 = node1.get().getAddress();
list = cacheService.getCachedList(snapshotKey, ipAddr1, targetClass);
//服务器ip
resultMap.put("legend", nodeMapping.values().stream().map(SnmpNode::getAddress).collect(Collectors.toList())); //批量格式时间MM-dd HH:mm:ss并封送到List
List<String> xAxis = list.stream()
.map(entity->cacheService.getFieldValue(entity,"createTime", LocalDateTime.class))
.filter(
localDateTime -> localDateTime.getMinute()%10==0 && localDateTime.getSecond() == 0
).map(createTime -> createTime.format(DateTimeFormatter.ofPattern("MM-dd HH:mm"))).collect(Collectors.toList()); //筛选后的样本大小
int filteredSize = xAxis.size(); //由于图表不能显示太多的数据,太多的就会被隐藏,因此只显示最近的20条数据
xAxis = xAxis.stream().skip(filteredSize>=0?filteredSize-20:filteredSize).collect(Collectors.toList());
resultMap.put("xAxis",xAxis); List<EChartSeries> series = new LinkedList<>();
for(Map.Entry<Long,SnmpNode> entry: nodeMapping.entrySet())
{
SnmpNode node = entry.getValue(); String ipAddr = node.getAddress(); List<T> traffics = cacheService.getCachedList(snapshotKey, ipAddr, targetClass); List<R> data = traffics.stream()
.filter(filter)
.skip(filteredSize>=0?filteredSize-20:filteredSize)
.map(mapper).collect(Collectors.toList()); EChartSeries chartSeries = new EChartSeries.Builder()
.withName(ipAddr)
.withStack(label)
.withType("line")
.withData((LinkedList<String>) new LinkedList<R>(data))
.build(); if(!CollectionUtils.isEmpty(data)) {
series.add(chartSeries);
}
}
resultMap.put("series",series);
}
return 你的返回类型;
}
import lombok.Data;
import lombok.NoArgsConstructor; import java.util.LinkedList; /***
* // name:'邮件营销',
* // type:'line',
* // stack: '内存使用率',
* // data:[120, 132, 101, 134, 90, 230, 210]
*/
@Data
@NoArgsConstructor
public class EChartSeries {
private String name;
private String type;
private String stack;
private LinkedList<String> data; private EChartSeries(Builder builder) {
setName(builder.name);
setType(builder.type);
setStack(builder.stack);
setData(builder.data);
} public static final class Builder {
private String name;
private String type;
private String stack;
private LinkedList<String> data; public Builder() {
} public Builder(EChartSeries copy) {
this.name = copy.getName();
this.type = copy.getType();
this.stack = copy.getStack();
this.data = copy.getData();
} public Builder withName(String name) {
this.name = name;
return this;
} public Builder withType(String type) {
this.type = type;
return this;
} public Builder withStack(String stack) {
this.stack = stack;
return this;
} public Builder withData(LinkedList<String> data) {
this.data = data;
return this;
} public EChartSeries build() {
return new EChartSeries(this);
}
}
}