Sereja and the Arrangement of Numbers
题解:
ummm。
在一副图中,如果全部点的度数是偶数/只有2个点是奇数,则能一笔画。
考虑图的点数k为奇数的时候,那么每个点的度数都是偶数点,所以就是可以一笔画,答案为 1 +k * (i - kll) / 2;
k为偶数的时候,所有的点是奇数点,我们保留2个点是奇数点,将其他的点改为偶数点,就可以一笔画了。 1 +k * (i - kll) / 2 + k/2 - 1.
代码:
#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 1e5 + ;
int n, m;
int a[N], b[N];
LL dp[N];
int main(){
scanf("%d%d", &n, &m);
for(int i = ; i <= m; ++i){
scanf("%d%d", &a[i], &b[i]);
if(i&) dp[i] = + i * (i - 1ll) / ;
else dp[i] = + i * (i-1ll)/ + i/ - ;
}
int k = m;
while(dp[k] > n) --k;
sort(b+, b++m, greater<int>());
LL ans = ;
for(int i = ; i <= k; ++i)
ans += b[i];
cout << ans << endl;
return ;
}