1. 什么是RSARSA算法是现今使用最广泛的公钥密码算法,也是号称地球上最安全的加密算法。在了解RSA算法之前,先熟悉下几个术语 根据密钥的使用方法,可以将密码分为对称密码和公钥密码 对称密码:加密和解密使用同一种密钥的方式 公钥密码:加密和解密使用不同的密码的方式,因此公钥密码通常也称为非对称密码。2. RSA加密RSA的加密过程可以使用一个通式来表达也就是说RSA加密是对明文的E次方后除以N后求余数的过程。就这么简单?对,就是这么简单。 从通式可知,只要知道E和N任何人都可以进行RSA加密了,所以说E、N是RSA加密的密钥,也就是说E和N的组合就是公钥,我们用(E,N)来表示公钥不过E和N不并不是随便什么数都可以的,它们都是经过严格的数学计算得出的,关于E和N拥有什么样的要求及其特性后面会讲到。顺便啰嗦一句E是加密(Encryption)的首字母,N是数字(Number)的首字母3. RSA解密RSA的解密同样可以使用一个通式来表达也就是说对密文进行D次方后除以N的余数就是明文,这就是RSA解密过程。知道D和N就能进行解密密文了,所以D和N的组合就是私钥从上述可以看出RSA的加密方式和解密方式是相同的,加密是求“E次方的mod N”;解密是求“D次方的mod N” 此处D是解密(Decryption)的首字母;N是数字(Number)的首字母。小结下公钥(E,N)私钥(D,N)密钥对(E,D,N)加密密文=明文EmodN解密明文=密文DmodN4. 生成密钥对既然公钥是(E,N),私钥是(D,N)所以密钥对即为(E,D,N)但密钥对是怎样生成的?步骤如下:求N求L(L为中间过程的中间数)求E求D4.1 求N准备两个质数p,q。这两个数不能太小,太小则会容易破解,将p乘以q就是N4.2 求LL 是 p-1 和 q-1的最小公倍数,可用如下表达式表示4.3 求EE必须满足两个条件:E是一个比1大比L小的数,E和L的最大公约数为1 用gcd(X,Y)来表示X,Y的最大公约数则E条件如下:之所以需要E和L的最大公约数为1是为了保证一定存在解密时需要使用的数D。现在我们已经求出了E和N也就是说我们已经生成了密钥对中的公钥了。4.4 求D数D是由数E计算出来的。D、E和L之间必须满足以下关系:只要D满足上述2个条件,则通过E和N进行加密的密文就可以用D和N进行解密。 简单地说条件2是为了保证密文解密后的数据就是明文。 现在私钥自然也已经生成了,密钥对也就自然生成了。 小结下:求NN= p * q ;p,q为质数求LL=lcm(p-1,q-1) ;L为p-1、q-1的最小公倍数求E1求D15 实践下吧我们用具体的数字来实践下RSA的密钥对对生成,及其加解密对全过程。为方便我们使用较小数字来模拟。5.1 求N我们准备两个很小对质数, p = 17 q = 19 N = p * q = 3235.2 求LL = lcm(p-1, q-1)= lcm(16,18) = 144 144为16和18对最小公倍数5.3 求E求E必须要满足2个条件:1即1E和144互为质数,5显然满足上述2个条件 故E = 5此时公钥=(E,N)= (5,323)5.4 求D求D也必须满足2个条件:1即1显然当D= 29 时满足上述两个条件 15*29 mod 144 = 145 mod 144 = 1 此时私钥=(D,N)=(29,323)5.5 加密准备的明文必须时小于N的数,因为加密或者解密都要mod N其结果必须小于N 假设明文 = 123 则 密文=明文EmodN=1235mod323=2255.6 解密明文=密文DmodN=22529mod323=123 解密后的明文为123。好了至此RSA的算法原理已经讲解完毕,是不是很简单?
10-09 11:18