>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
>>> enc.n_values_
array([2, 3, 4])
>>> enc.feature_indices_
array([0, 2, 5, 9])
>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])
注意:仅仅是数值型字段才可以,如果是字符类型字段则不能直接搞定
需要使用pandas get_dummies搞定
例如:
Using the get_dummies
will create a new column for every unique string in a certain column:使用get_dummies进行one-hot编码
- pd.get_dummies(df)
还可以:
import pandas as pd
import numpy as np
from sklearn_pandas import DataFrameMapper
from sklearn.preprocessing import OneHotEncoder data = pd.DataFrame({'text':['aaa', 'bbb'], 'number_1':[1, 1], 'number_2':[2, 2]}) # number_1 number_2 text
# 0 1 2 aaa
# 1 1 2 bbb # SomeEncoder here must be any encoder which will help you to get
# numerical representation from text column
mapper = DataFrameMapper([
('text', SomeEncoder),
(['number_1', 'number_2'], OneHotEncoder())
])
mapper.fit_transform(data)