一、第一阶段从底层bios获取数据
首先是由最底层的bios扫描到硬件信息,然后上传给上层的kernel使用的。这里bios定义了一系列的中断调用函数供上层使用。对于内存在x86下则是定义了INT 0x15,eax = 0xE820来获取万恒的内存映射。INT 0x15,AX = 0xE801则是用于获取内存大小。INT 0x15,AX = 0x88也是用于获取内存大小。
内核就是通过调用INT 0x15,EAX = 0xE820来获取物理内存状态的。
内核具体是通过函数detect_memory_e820(arch/x86/boot/memory.c)来执行中断调用。该函数主要是循环执行bios的中断系统调用,知道寄存器ebx的值为0的时候。其过程大致分为以下几步:
-
记录e820的内存地址。因为INT 15中断处理函数会将e820记录的数据拷贝到es:di指向的内存位置,因此需要在首次调用的时候,将es:di指向一块内存区域。后续每次中断调用的时候,后需要将es:di增加一个e820记录大小的偏移,用于记录下一个e820记录。
-
e820记录的索引。e820记录的索引是通过寄存器ebx传递的。如果还有e820记录,中断处理函数会将ebx值加1。当没有e820记录需要读取的时候,中断处理函数会将ebx的值置为0。因此内核这里使用ebx的值是否为0来判断记录是否已经读完。
static int detect_memory_e820(void)
{
int count = 0;
struct biosregs ireg, oreg;
struct boot_e820_entry *desc = boot_params.e820_table;
static struct boot_e820_entry buf; /* static so it is zeroed */
initregs(&ireg);
ireg.ax = 0xe820;
ireg.cx = sizeof buf;
ireg.edx = SMAP;
ireg.di = (size_t)&buf;
/*
* Note: at least one BIOS is known which assumes that the
* buffer pointed to by one e820 call is the same one as
* the previous call, and only changes modified fields. Therefore,
* we use a temporary buffer and copy the results entry by entry.
*
* This routine deliberately does not try to account for
* ACPI 3+ extended attributes. This is because there are
* BIOSes in the field which report zero for the valid bit for
* all ranges, and we don't currently make any use of the
* other attribute bits. Revisit this if we see the extended
* attribute bits deployed in a meaningful way in the future.
*/
do {
intcall(0x15, &ireg, &oreg); //执行bios 0x15中断系统调用
ireg.ebx = oreg.ebx; /* for next iteration... */
/* BIOSes which terminate the chain with CF = 1 as opposed
to %ebx = 0 don't always report the SMAP signature on
the final, failing, probe. */
if (oreg.eflags & X86_EFLAGS_CF)
break;
/* Some BIOSes stop returning SMAP in the middle of
the search loop. We don't know exactly how the BIOS
screwed up the map at that point, we might have a
partial map, the full map, or complete garbage, so
just return failure. */
if (oreg.eax != SMAP) {
count = 0;
break;
}
*desc++ = buf; //读取到的数据拷贝到desc
count++;
} while (ireg.ebx && count < ARRAY_SIZE(boot_params.e820_table));
return boot_params.e820_entries = count; //返回所有的e820条目
}
一个典型的INT 15h,EAX = E820的输出如下[1]:
Base Address | Length | Type 0x0000000000000000 | 0x000000000009FC00 | Free Memory (1) 0x000000000009FC00 | 0x0000000000000400 | Reserved Memory (2) 0x00000000000E8000 | 0x0000000000018000 | Reserved Memory (2) 0x0000000000100000 | 0x0000000001F00000 | Free Memory (1) 0x00000000FFFC0000 | 0x0000000000040000 | Reserved Memory (2) |
内核获取到的最终结果存储在boot_params.e820_table中。
内核在bootload的第一个阶段从bios中获取到内存的原始数据信息,在内核会将其逐步转化,主要有三个数据结构:
e820_table_firmware:最原始的固件版本数据,在bootloader阶段传递给内核。
e820_table_kexec:内核轻微修改过的版本,内核标记setup_data list为reserved,因此kexec可以重用setup_data信息。此外,kexec可以修改该结构来fake一个mptable。
e820_table:这是由底层x86代码管理的最主要的结构,它最终会传递到上层的MM管理层。一旦信息传递到上层内存管理层,e820 map数据将不再有效,因此它的主要目的是作为一个临时存储,用于存储早期启动阶段固件特定的内存布局数据。
二、第二阶段将数据拷贝到e820_table结构
因此下一个阶段就是将物理内存信息从boot_params.e820_table中转换到e820_table中。
该过程其实比较简单,在平台初始化的时候会调用e820__memory_setup_default函数。该函数最终会调用__e820__range_add。就是将全局变量e820_table的entryies赋予boot_params.e820_table条目中的值。
/*
* Add a memory region to the kernel E820 map.
*/
static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
{
int x = table->nr_entries;
if (x >= ARRAY_SIZE(table->entries)) {
pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
start, start + size - 1);
return;
}
table->entries[x].addr = start;
table->entries[x].size = size;
table->entries[x].type = type;
table->nr_entries++;
}
三、第三阶段将e820_table传递给memblock
最后就是将e820_table结构传递给上层MM管理单元使用。这里用到的函数e820__memblock_setup。该函数是在setup_arch中被调用。
void __init e820__memblock_setup(void)
{
int i;
u64 end;
/*
* The bootstrap memblock region count maximum is 128 entries
* (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
* than that - so allow memblock resizing.
*
* This is safe, because this call happens pretty late during x86 setup,
* so we know about reserved memory regions already. (This is important
* so that memblock resizing does no stomp over reserved areas.)
*/
memblock_allow_resize();
for (i = 0; i < e820_table->nr_entries; i++) {
struct e820_entry *entry = &e820_table->entries[i];
end = entry->addr + entry->size;
if (end != (resource_size_t)end)
continue;
if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
continue;
memblock_add(entry->addr, entry->size);
}
/* Throw away partial pages: */
memblock_trim_memory(PAGE_SIZE);
memblock_dump_all();
}
主要是调用memblock_add添加新的memblock region。其会调用memlock_add_range来添加内存块到全局变量memblock.memory。在memlock_add_range中主要调用memblock_insert_region来插入新的memblock region。
/**
* memblock_insert_region - insert new memblock region
* @type: memblock type to insert into
* @idx: index for the insertion point
* @base: base address of the new region
* @size: size of the new region
* @nid: node id of the new region
* @flags: flags of the new region
*
* Insert new memblock region [@base, @base + @size) into @type at @idx.
* @type must already have extra room to accommodate the new region.
*/
static void __init_memblock memblock_insert_region(struct memblock_type *type,
int idx, phys_addr_t base,
phys_addr_t size,
int nid,
enum memblock_flags flags)
{
struct memblock_region *rgn = &type->regions[idx];
BUG_ON(type->cnt >= type->max);
memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
rgn->base = base;
rgn->size = size;
rgn->flags = flags;
memblock_set_region_node(rgn, nid);
type->cnt++;
type->total_size += size;
}
这里涉及到两个数据结构struct memblock_type和struct memblock_region,其定义如下:
/**
* struct memblock_region - represents a memory region
* @base: physical address of the region
* @size: size of the region
* @flags: memory region attributes
* @nid: NUMA node id
*/
struct memblock_region {
phys_addr_t base;
phys_addr_t size;
enum memblock_flags flags;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int nid;
#endif
};
/**
* struct memblock_type - collection of memory regions of certain type
* @cnt: number of regions
* @max: size of the allocated array
* @total_size: size of all regions
* @regions: array of regions
* @name: the memory type symbolic name
*/
struct memblock_type {
unsigned long cnt;
unsigned long max;
phys_addr_t total_size;
struct memblock_region *regions;
char *name;
};
memblock是一种处于启动阶段的内存管理方式,在启动阶段,通常的内存管理单元还没有起来运行。memblock将系统内存看做连续区域的集合,分为三个集合:memory、reserved、physmem。
memory:描述的是kernel使用的物理内存。
reserved:描述的是已分配的regions。
physmem:描述的是boot过程中实际可用的物理内存。physmem只在某些架构下可用。
每一个区域通过struct memblock_region来表示。每一个内存类型通过struct memblock_type来表示,其包含了一组memory regions。
在系统启动过程中,mem_init函数将会释放掉所有的内存给页分配器使用。除非架构支持CONFIG_ARCH_KEEP_MEMBLOCK,否则除了physmem的所有memblock数据结构在系统初始化完成后都将被丢弃。
参考: