题意:定义一种树,每个节点的权值都是2到2,每个权值出现一次,每个节点的左子树的权值和小于右子树,除非只有一个子树。给你n和d,问有n个节点且恰好深度是d的这种树有多少种。
比赛的时候我没有做出来,当时A的人还是不少,\
有一个超傻逼的居然没想到,就是 ,这表示一个权值较大的节点是大于所有权值小于他的值之和的。
所以对于每一个合法的树,只要把权值最大的放到右子树就可以满足了。
动归过程:f[i][j]表示i个节点深度不超过j的方案种数。
for (int i = ; i <= N; i++){
for (int j = ; j <= N; j++){
f[i][j] = ( * i * f[i - ][j - ]) % MOD;
for (int k = ; k < i - ; k++){
f[i][j] = (f[i][j] + ((C[i][i - ] * C[i - ][k]) % MOD) * ((f[k][j - ] * f[i - k - ][j - ]) % MOD)) % MOD;
}
}
}
对于根节点分两种情况,只有一个子树,或者左右子树都有。
如果只有一个子树,那么f[i][j] = i * f[i-1][j-1] * 2。 意思就是任取一个节点做根节点,然后把满足条件的f[i-1][j-1]作为根节点的子树,左右两个子树所以再乘以2.
如果左右子树都有,情况稍微麻烦一点,那么就枚举左子树中的节点个数k,1≤k≤i-2,对于每一个k,还是任选一个节点做根节点,然后在除了根节点和剩下的最大值外的i-2个点中选k个到左子树,剩下的自然就到右子树了。这是节点的分配,那方案数呢,左子树有k个节点,深度不超过j-1,就是f[k][j-1],右子树有i-k-1各节点,深度同样不超过j-1,就是f[i-k-1][j-1],然后将这些乘起来就得到总的方案数了,所以有了下面总的状态转移方程。
f[i][j] = 2*i*f[i - 1][j - 1] + (i*C[i - 2][k]*f[k][j - 1]*f[i - k - 1][j - 1])(1≤k≤i-2)
其实还是蛮简单的啊,为什么当时不会做呢???智商被压制的感觉特别不爽
#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#define LL long long
#define eps 1e-8
#define INF 0x3f3f3f3f
#define OPEN_FILE
#define MAXN 400
using namespace std;
LL f[MAXN][MAXN], C[MAXN][MAXN];
const LL MOD = 1e9 + ;
const int N = ;
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
memset(C, , sizeof(C));
C[][] = ;
for (int i = ; i <= N; i++){
C[i][] = ;
for (int j = ; j <= i; j++){
C[i][j] = (C[i - ][j - ] + C[i - ][j]) % MOD;
}
}
memset(f, , sizeof(f));
for (int i = ; i <= N; i++){
f[][i] = ;
}
for (int i = ; i <= N; i++){
for (int j = ; j <= N; j++){
f[i][j] = ( * i * f[i - ][j - ]) % MOD;
for (int k = ; k < i - ; k++){
f[i][j] = (f[i][j] + ((i * C[i - ][k]) % MOD) * ((f[k][j - ] * f[i - k - ][j - ]) % MOD)) % MOD;
}
}
}
int T;
scanf("%d", &T);
int n, d;
for (int cas = ; cas <= T; cas++){
scanf("%d%d", &n, &d);
printf("Case #%d: %I64d\n", cas, (f[n][d] - f[n][d - ] + MOD) % MOD);
}
return ;
}