用Pytorch写了两个CNN网络,数据集用的是FashionMNIST。其中CNN_1只有一个卷积层、一个全连接层,CNN_2有两个卷积层、一个全连接层,但训练完之后的准确率两者差不多,且CNN_1训练时间短得多,且跟两层的全连接的准确性也差不多,看来深度学习水很深,还需要进一步调参和调整网络结构。

CNN_1:

runnig time:29.795 sec.
accuracy: 0.8688

CNN_2:

runnig time:165.101 sec.
accuracy: 0.8837

 import time
import torch.nn as nn
from torchvision.datasets import FashionMNIST
import torch
import numpy as np
from torch.utils.data import DataLoader
import torch.utils.data as Data
import matplotlib.pyplot as plt #import os
#os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
'''数据集为FashionMNIST'''
data=FashionMNIST('../pycharm_workspace/data/') def train_test_split(data,test_pct=0.3):
test_len=int(data.data.size(0)*test_pct)
x_test=data.data[0:test_len].type(torch.float)
x_train=data.data[test_len:].type(torch.float) y_test=data.targets[0:test_len]
y_train=data.targets[test_len:] return x_train,y_train,x_test,y_test def cal_accuracy(model,x_test,y_test,samples=10000):
'''取一定数量的样本,用于评估'''
y_pred=model(x_test[:samples])
'''把模型输出(向量)转为label形式'''
y_pred_=list(map(lambda x:np.argmax(x),y_pred.data.numpy()))
'''计算准确率'''
acc=sum(y_pred_==y_test.numpy()[:samples])/samples
return acc class CNN_1(nn.Module):
def __init__(self):
super().__init__()
self.conv1=nn.Sequential(
nn.Conv2d(1,#in_channels,即图片的通道数量,黑白为1,RGB彩色为3,filter的层数默认与此数字一致
32,#out_channels,即filter的数量
4,#kernel_size,4代表(4,4)即正方形的filter,若为长方形,则(height,width)
stride=2,#filter移动的步长,2代表(2,2)表示右移和下移都是一个像素,否则用(n,m)表示步长
padding=2#图片外围每一条边补充0的层数,output_size=1+(input_size+2*padding-filter_size)/stride
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2)
)
self.out=nn.Linear(32*7*7,10) def forward(self,x):
x=self.conv1(x)
temp=x.view(x.shape[0],-1)
out=self.out(temp)
return out class CNN_2(nn.Module):
def __init__(self):
super().__init__()
self.conv1=nn.Sequential(
nn.Conv2d(1,#in_channels,即图片的通道数量,黑白为1,RGB彩色为3,filter的层数默认与此数字一致
32,#out_channels,即filter的数量
5,#kernel_size,3代表(3,3)即正方形的filter,若为长方形,则(height,width)
stride=1,#filter移动的步长,1代表(1,1)表示右移和下移都是一个像素,否则用(n,m)表示步长
padding=2#图片外围每一条边补充0的层数,此处设置为2是为了保持输出的长宽与图片的长宽一致,因为output_size=1+(input_size+2*padding-filter_size)/stride
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2)
)
self.conv2=nn.Sequential(
nn.Conv2d(32,#in_channels,即图片的通道数量,黑白为1,RGB彩色为3,filter的层数默认与此数字一致
16,#out_channels,即filter的数量
5,#kernel_size,5代表(5,5)即正方形的filter,若为长方形,则(height,width)
stride=1,#filter移动的步长,1代表(1,1)表示右移和下移都是一个像素,否则用(n,m)表示步长
padding=2#图片外围每一条边补充0的层数,此处设置为2是为了保持输出的长宽与图片的长宽一致,因为output_size=1+(input_size+2*padding-filter_size)/stride
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2)
)
self.out=nn.Linear(16*7*7,10) def forward(self,x):
x=self.conv1(x)
x=self.conv2(x)
x=x.view(x.size(0),-1)
out=self.out(x)
return out def train_3():
num_epoch=5
#t_data=data.data.type(torch.float)
x_train,y_train,x_test,y_test=train_test_split(data,0.2)
'''使用DataLoader批量输入训练数据'''
dl_train=DataLoader(Data.TensorDataset(x_train,y_train),batch_size=100,shuffle=True)
'''创建模型对象'''
model=CNN_2()
'''定义损失函数'''
loss_func=torch.nn.CrossEntropyLoss()
'''定义优化器'''
optimizer=torch.optim.Adam(model.parameters(),lr=0.001)
start=time.time() acc_hist=[]
loss_hist=[]
for i in range(num_epoch):
for index,(x_data,y_data) in enumerate(dl_train):
prediction=model(torch.unsqueeze(x_data, dim=1))
loss=loss_func(prediction,y_data)
print('No.%s,loss=%.3f'%(index+1,loss.data.numpy()))
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_val=loss.data.numpy()
if i==0:
acc=cal_acc(prediction,y_data)
acc_hist.append(acc)
loss_hist.append(loss_val)
print('No.%s,loss=%.3f'%(i+1,loss_val))
#loss_hist.append(loss_val)
#acc=cal_accuracy(model,x_test,y_test,samples=10000)
#acc_hist.append(acc)
print('acc=',acc) end=time.time()
print('runnig time:%.3f sec.'%(end-start))
acc=cal_accuracy(model,torch.unsqueeze(x_test,dim=1),y_test,samples=10000)
print('accuracy:',acc) if __name__=='__main__':
train_3()
05-16 12:56