论文 Decoupled Weight Decay Regularization 中提到,Adam 在使用时,L2 regularization 与 weight decay 并不等价,并提出了 AdamW,在神经网络需要正则项时,用 AdamW 替换 Adam+L2 会得到更好的性能。

TensorFlow 2.x 在 tensorflow_addons 库里面实现了 AdamW,可以直接pip install tensorflow_addons进行安装(在 windows 上需要 TF 2.1),也可以直接把这个仓库下载下来使用。

下面是一个利用 AdamW 的示例程序(TF 2.0, tf.keras),在使用 AdamW 的同时,使用 learning rate decay:(以下程序中,AdamW 的结果不如 Adam,这是因为模型比较简单,加多了 regularization 反而影响性能)

import tensorflow as tf
import os
from tensorflow_addons.optimizers import AdamW import numpy as np from tensorflow.python.keras import backend as K
from tensorflow.python.util.tf_export import keras_export
from tensorflow.keras.callbacks import Callback def lr_schedule(epoch):
"""Learning Rate Schedule
Learning rate is scheduled to be reduced after 20, 30 epochs.
Called automatically every epoch as part of callbacks during training.
# Arguments
epoch (int): The number of epochs
# Returns
lr (float32): learning rate
"""
lr = 1e-3 if epoch >= 30:
lr *= 1e-2
elif epoch >= 20:
lr *= 1e-1
print('Learning rate: ', lr)
return lr def wd_schedule(epoch):
"""Weight Decay Schedule
Weight decay is scheduled to be reduced after 20, 30 epochs.
Called automatically every epoch as part of callbacks during training.
# Arguments
epoch (int): The number of epochs
# Returns
wd (float32): weight decay
"""
wd = 1e-4 if epoch >= 30:
wd *= 1e-2
elif epoch >= 20:
wd *= 1e-1
print('Weight decay: ', wd)
return wd # just copy the implement of LearningRateScheduler, and then change the lr with weight_decay
@keras_export('keras.callbacks.WeightDecayScheduler')
class WeightDecayScheduler(Callback):
"""Weight Decay Scheduler. Arguments:
schedule: a function that takes an epoch index as input
(integer, indexed from 0) and returns a new
weight decay as output (float).
verbose: int. 0: quiet, 1: update messages. ```python
# This function keeps the weight decay at 0.001 for the first ten epochs
# and decreases it exponentially after that.
def scheduler(epoch):
if epoch < 10:
return 0.001
else:
return 0.001 * tf.math.exp(0.1 * (10 - epoch)) callback = WeightDecayScheduler(scheduler)
model.fit(data, labels, epochs=100, callbacks=[callback],
validation_data=(val_data, val_labels))
```
""" def __init__(self, schedule, verbose=0):
super(WeightDecayScheduler, self).__init__()
self.schedule = schedule
self.verbose = verbose def on_epoch_begin(self, epoch, logs=None):
if not hasattr(self.model.optimizer, 'weight_decay'):
raise ValueError('Optimizer must have a "weight_decay" attribute.')
try: # new API
weight_decay = float(K.get_value(self.model.optimizer.weight_decay))
weight_decay = self.schedule(epoch, weight_decay)
except TypeError: # Support for old API for backward compatibility
weight_decay = self.schedule(epoch)
if not isinstance(weight_decay, (float, np.float32, np.float64)):
raise ValueError('The output of the "schedule" function '
'should be float.')
K.set_value(self.model.optimizer.weight_decay, weight_decay)
if self.verbose > 0:
print('\nEpoch %05d: WeightDecayScheduler reducing weight '
'decay to %s.' % (epoch + 1, weight_decay)) def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs['weight_decay'] = K.get_value(self.model.optimizer.weight_decay) if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = '1' gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, enable=True)
print(gpus)
cifar10 = tf.keras.datasets.cifar10 (x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16, (3, 3), padding='same', activation='relu', input_shape=(32, 32, 3)),
tf.keras.layers.AveragePooling2D(),
tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu'),
tf.keras.layers.AveragePooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation='softmax')
]) optimizer = AdamW(learning_rate=lr_schedule(0), weight_decay=wd_schedule(0))
# optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3) tb_callback = tf.keras.callbacks.TensorBoard(os.path.join('logs', 'adamw'),
profile_batch=0)
lr_callback = tf.keras.callbacks.LearningRateScheduler(lr_schedule)
wd_callback = WeightDecayScheduler(wd_schedule) model.compile(optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy']) model.fit(x_train, y_train, epochs=40, validation_split=0.1,
callbacks=[tb_callback, lr_callback, wd_callback]) model.evaluate(x_test, y_test, verbose=2)

以上代码实现了在 learning rate decay 时使用 AdamW,虽然只能是在 epoch 层面进行学习率衰减。

在使用 AdamW 时,如果要使用 learning rate decay,那么对 weight_decay 的值要进行同样的学习率衰减,不然训练会崩掉。

References

How to use AdamW correctly? -- wuliytTaotao

Loshchilov, I., & Hutter, F. Decoupled Weight Decay Regularization. ICLR 2019. Retrieved from http://arxiv.org/abs/1711.05101

05-14 11:51