题目链接:http://codeforces.com/problemset/problem/808/E

题意:给出n个体积为wi, 价值为ci的物品,背包容量为m,求能容纳的最大物品价值,其中 1<=wi<=3;

思路:看到题目首先想到了atcoder的一道题http://www.cnblogs.com/geloutingyu/p/6789985.html

然而这里的 n 为 1e5,直接贪心枚举肯定是不行的.可以考虑O(nlogn)的算法...

这里可以先按照价值从大到小枚举体积为3的物品,用剩余的容量去装体积为1, 和 2 的物品使剩余空间取得最大值,所有枚举情况中的最大值即为答案;

现在问题转化成了在O(longn)的时间复杂度内求出剩余空间能容纳的1,和2物品最大价值,以物品2的数目为 x 轴,能容纳的最大价值为 y 轴,

将其描点再连成光滑曲线后是一条单峰抛物线 / 单峰拋物线的一侧 ;可以做个简易的证明,对于已经降序排列的物品1, 物品2 显然其单位体积的

价值是非递增的,用 i 表示当前选了 i 个物品2,area2( i )为前 i 个物品平均单位体积的价值,显然 area2( i )是随 i 非递增的,物品1同理,并且这里的容量是固定的,

所以其在以物品2的数目为x轴,最大价值为 y 轴的直角坐标系中的图形为:

  1,若物品1, 2的体积和不大于背包剩余空间,则其为单峰函数的左侧;

  2,对于物品1, 2的体积和大于背包剩余空间,有:

    a,若area2(index2) > area1(1),其中index2为物品2的数目,则其为单峰函数左侧;

    b,若area2(1) < area1(index1),其中index1为物品1的数目,则其为单峰函数右侧;

    c,其他情况则存在峰;

对于单峰函数直接三分一下物品2的数目即可找峰值,注意这里可能会存在单调的情况(为单峰函数的一侧),所以还要判断一下边界;

ps:我试了下先枚举物品3再三分物品1的数目wa了,百思不得其解,望路过的大佬指教~

代码:

 #include <iostream>
#include <stdio.h>
#include <algorithm>
#define ll long long
using namespace std; const int MAXN = 3e5+;
ll a[MAXN], b[MAXN], c[MAXN];
ll va[MAXN], vb[MAXN], vc[MAXN];
int n, m, indxa=, indxb=, indxc=; bool cmp(ll a, ll b){
return a > b;
} void get_v(void){
for(int i=; i<=m; i++){
va[i] = va[i-] + a[i];
}
for(int i=; i*<=m; i++){
vb[i<<] = vb[(i-)<<] + b[i];
vb[(i<<)-] = vb[(i-)<<];
}
for(int i=; i*<=m; i++){
vc[i*] = vc[(i-)*] + c[i];
}
} ll f(int x, int w){
if(x* > w) x=w>>;
return vb[x*] + va[w-x*];
} ll find(int w){//三分体积为2的数目
if(w <= ) return ;
int l=, r=w, rmid=w, lmid=;
while(l < r-){
lmid = l+(r-l)/;
rmid = r-(r-l)/;
if(f(lmid, w) > f(rmid, w)) r = rmid;
else l = lmid;
}
return max(max(max(max(f(l, w), f(r, w)), f(lmid, w)), f(rmid, w)), f(, w));//***注意这里的边界条件
} int main(void){
ll ans=;
scanf("%d%d", &n, &m);
for(int i=; i<n; i++){
int x, y;
scanf("%d%d", &x, &y);
if(x == ) a[indxa++] = y;
else if(x == ) b[indxb++] = y;
else c[indxc++] = y;
}
sort(a+, a+indxa, cmp);
sort(b+, b+indxb, cmp);
sort(c+, c+indxc, cmp);
get_v();
for(int i=; i*<=m; i++){//枚举体积为3的数目
ll cnt = vc[i*];
cnt += find(m-i*);
ans = ans > cnt ? ans : cnt;
}
printf("%lld\n", ans);
return ;
}
05-13 19:42