51nod1380 夹克老爷的逢三抽一-LMLPHP

问题等价于选出$n / 3$个不相邻元素是权值和最大

这是一个经典贪心问题,同种树,拿堆维护即可,复杂度$O(n \log n)$

#include <queue>
#include <cstdio>
#include <cstring>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define ll long long
#define ri register int
#define sid 200050 int n, k;
bool gg[sid];
ll ans, v[sid], pre[sid], nxt[sid]; struct Man {
ll id, val;
Man() {}
Man(ll _i, ll _v) : id(_i), val(_v) {}
friend bool operator < (Man a, Man b)
{ return a.val < b.val; }
} ;
priority_queue <Man> q; inline void del(int o) {
pre[nxt[o]] = pre[o];
nxt[pre[o]] = nxt[o];
gg[o] = ;
} int main() {
n = read();
for(ri i = ; i <= n; i ++) v[i] = read(); for(ri i = ; i <= n; i ++) {
pre[i] = i - ; nxt[i] = i + ;
q.push(Man(i, v[i]));
}
pre[] = n; nxt[n] = ; k = n / ;
for(ri i = ; i <= k; i ++) {
Man o; int id;
while() {
o = q.top(); q.pop();
id = o.id; if(!gg[id]) break;
}
ans += v[id];
v[id] = v[pre[id]] + v[nxt[id]] - v[id];
q.push(Man(id, v[id]));
del(pre[id]); del(nxt[id]);
}
printf("%lld\n", ans);
return ;
}
05-13 15:53