思路
code
class Solution {
public:
/**
* @param A: An integer array.
* @param B: An integer array.
* @return: a double whose format is *.5 or *.0
*/
double findMedianSortedArrays(vector<int> A, vector<int> B) {
// write your code here
int sizeA = A.size(), sizeB = B.size();
if (sizeA <= 0 && sizeB <= 0) {
return 0;
}
int total = sizeA + sizeB;
if (total % 2 == 1) {
return findKth(A, 0, B, 0, total / 2 + 1);
}
else {
return (findKth(A, 0, B, 0, total / 2) + findKth(A, 0, B, 0, total / 2 + 1)) / 2;
}
}
double findKth(vector<int> &nums1, int i, vector<int> &nums2, int j, int k) {
// 首先需要让数组1的长度小于或等于数组2的长度
if (nums1.size() - i > nums2.size() - j) {
return findKth(nums2, j, nums1, i, k);
}
// 判断小的数组是否为空,为空的话,直接在另一个数组找第K个即可
if (nums1.size() == i) {
return nums2[j + k - 1];
}
// 当K = 1时,表示我们要找第一个元素,只要比较两个数组的第一个元素,返回较小的那个即可
if (k == 1) {
return min(nums1[i], nums2[j]);
}
int pa = min(i + k / 2, int(nums1.size())), pb = j + k - pa + i;
if (nums1[pa - 1] < nums2[pb - 1]) {
return findKth(nums1, pa, nums2, j, k - pa + i);
}
else if (nums1[pa - 1] > nums2[pb - 1]) {
return findKth(nums1, i, nums2, pb, k - pb + j);
}
else {
return nums1[pa - 1];
}
}
};