转载地址:http://www.cppblog.com/eryar/archive/2012/06/30/180916.html
一、简介 Introduction to Package gp
gp是几何处理程序包(Geometric Processor package),简称gp。包gp提供以下功能:
- 代数计算;如坐标计算、矩阵计算;
- 基本解析几何元素;如变换、点、矢量、线、面、轴、二次曲线和初等曲面;
这些实体同时在二维和三维空间中定义,且包中的类都是非持续的(non-persistent),即这些类的实例都是以值的方式处理而不是引用。当复制这种对象时,是对象本体。改变一个实例不会影响到其他的实例。
可用的几何实体如下所示:
- 2D&3D Cartesian coordinates(x,y,z); 二维&三维笛卡尔坐标;
- Matrices; 矩阵;
- Cartesian points; 笛卡尔坐标点;
- Vector; 矢量;
- Direction; 方向;
- Axis; 轴;
- Line; 直线;
- Circle; 圆;
- Ellipse; 椭圆;
- Hyperbola; 双曲线;
- Parabola; 抛物线;
- Plane; 面;
- Infinite cylindrical surface; 柱面;
- Spherical surface; 球面;
- Toroidal surface; 环面;
- Conical surface; 锥面;
二、几何元素的集合 Collections of Primitive Geometric Types
创建几何对象之前,根据你是将几何对象用于二维还是三维来确定。若你需要一个几何对象集而不是单一的几何对象,即用来处理一类几何元素,包TColgp就是提供这种功能的。
Package TColgp提供类如:XY, XYZ, Pnt, Pnt2d, Vec, Vec2d, Lin, Lin2D, Circ, Circ2d的TCollection的实例。包中的类简单列举如下:
- TColgp_Array1OfCirc;
- TColgp_Array1OfDir;
- TColgp_Array1OfPnt;
- TColgp_Array1OfVec;
- TColgp_Array2OfCirc2d;
- TColgp_Array2OfPnt;
- TColgp_HArray1OfCirc2d;
- TColgp_HArray2OfDir;
- TColgp_HSequenceOfDir;
- TColgp_SequenceOfDir;
- TColgp_SequenceOfPnt;
- TColgp_SequenceOfXYZ;
个人意见,若使用标准C++的容器类(The STL Template Container),就不需要创建这么多类了。
三、基本几何库 Basic Geometric Libraries
有几个库提供了曲线和曲面的基本计算功能。若要处理由包gp创建的几何对象,初等曲线曲面的有用算法库在包:ElCLib和ElSLib中。包Precision提供两个数字比较的功能。
- Package ElCLib; ElCLib代表:Elementary Curves Library. 提供初等曲线曲面的基本几何计算功能;
- Package ElSLib; ElSLib代表:Elementary Surfaces Library. 提供初等曲面的基本几何计算。
- Package Bnd;提供二维和三维空间中几何元素包围盒的计算功能;
- Package Precision; 由于浮点数在计算机内实际上是一个近似表示,在手工计算看来为正确的结果,在计算机中运算未必得出正确的结果。所以,我们得到一个重要的经验:使用浮点数进行相等(==)和不等(!=)比较的操作通常是有问题的。浮点数的相等比较,一般总是使用两者相减的值是否落在0的邻域中来判断。这就是邻域比较技术。在OpenCASCADE中专门提供包Precision来处理两个数值的比较问题。
四、代码示例 Code Sample
//------------------------------------------------------------------------------
// Copyright (c) 2012 eryar All Rights Reserved.
//
// File : Main.cpp
// Author : [email protected]
// Date : 2012-6-23 21:30
// Version : 1.0v
//
// Description : Test primitive Geometric Types in OpenCASCADE.
//
// The Geometric Processor package, called gp.
//
// The pg package offers classes for both 2D and 3D objects which
// are handled by value rather than by reference. When this sort of object
// is copied, it is copied entirely. Changes in one instance will not be
// reflected in another.
//
//============================================================================== // Use Toolkit TKernel.
#pragma comment(lib,"TKernel.lib")
// Use Toolkit TKMath.
#pragma comment(lib, "TKMath.lib") #include <gp.hxx>
#include <gp_Pnt.hxx>
#include <gp_Trsf.hxx>
#include <Precision.hxx> void DumpPoint(const gp_Pnt& p); int main(int argc, char* argv[])
{
gp_Pnt aPoint(, , ); // 1. Translate a point in a direction.
// The direction determined by a gp_Vec or two gp_Pnt.
cout<<"Before translated:";
DumpPoint(aPoint); aPoint.Translate(gp_Pnt(, , ), gp_Pnt(, , )); cout<<"After translated:";
DumpPoint(aPoint); // 2. Rotate a point.
// Rotate a point by an axis and the rotate angle.
cout<<"Before rotated:";
DumpPoint(aPoint); // Roate 45 degree about Z axis.
// Positive angle value will be rotated counterclockwise.
aPoint.Rotate(gp::OZ(), PI/); cout<<"After rotated 45 degree about Z axis:";
DumpPoint(aPoint); // 2.1 Test Package Precision.
if (aPoint.X() < Precision::Confusion() && aPoint.X() > -Precision::Confusion())
{
cout<<"Point X value:"<<aPoint.X()<<endl;
cout<<"Precision::Confusion() value:"<<Precision::Confusion()<<endl;
} aPoint.Rotate(gp::OZ(), PI/);
cout<<"After rotate 45 degree about Z axis:";
DumpPoint(aPoint); // 3. Transform a point by gp_Trsf.
gp_Trsf transform;
transform.SetMirror(gp::OX()); cout<<"Before gp_Trsf:";
DumpPoint(aPoint); aPoint.Transform(transform); cout<<"After gp_Trsf:";
DumpPoint(aPoint); // 4. Mirror a point.
// 4.1 Performs the symmetrical transformation of
// a point with respect to an axis placement which
// is the axis of the symmetry.
cout<<"Before mirrored with a symmetric axis:";
DumpPoint(aPoint); aPoint.Mirror(gp::OY()); cout<<"After mirrored with a symmetric axis:";
DumpPoint(aPoint); // 4.2 Performs the symmetrical transformation of
// a point with respect to a plane.
cout<<"Before mirrored with a symmetric plane:";
DumpPoint(aPoint); aPoint.Mirror(gp::XOY()); cout<<"After mirrored with a symmetric plane";
DumpPoint(aPoint); // 5. Scale a point.
aPoint.SetCoord(, , );
cout<<"Before Scaled:";
DumpPoint(aPoint); /*
// Scale point source code...
inline void gp_Pnt::Scale (const gp_Pnt& P,
const Standard_Real S)
{
gp_XYZ XYZ = P.coord;
XYZ.Multiply (1.0 - S);
coord.Multiply (S);
coord.Add (XYZ);
}
*/ aPoint.Scale(gp_Pnt(, , ), ); cout<<"After Scaled:";
DumpPoint(aPoint); return ;
} /**
* Description: Dump point information.
*/
void DumpPoint( const gp_Pnt& p )
{
cout<<"("<<p.X()<<","<<p.Y()<<","<<p.Z()<<")"<<endl;
} /*
输出结果如下:
1: Before translated:(0,0,0)
2: After translated:(8,8,-3)
3: Before rotated:(8,8,-3)
4: After rotated 45 degree about Z axis:(8.88178e-016,11.3137,-3)
5: Point X value:8.88178e-016
6: Precision::Confusion() value:1e-007
7: After rotate 45 degree about Z axis:(-8,8,-3)
8: Before gp_Trsf:(-8,8,-3)
9: After gp_Trsf:(-8,-8,3)
10: Before mirrored with a symmetric axis:(-8,-8,3)
11: After mirrored with a symmetric axis:(8,-8,-3)
12: Before mirrored with a symmetric plane:(8,-8,-3)
13: After mirrored with a symmetric plane(8,-8,3)
14: Before Scaled:(1,2,1)
15: After Scaled:(1,2,0)
16: Press any key to continue . . .
*/
五、结论
包gp提供了基本的几何元素表示及初等解析几何计算功能。对于几何元素的集合也有自己的类库。对于两个数值的比较采用了邻域比较技术。
Python代码:
#!/usr/bin/env python
# -*- coding:utf-8 -*- from OCC.gp import *
from OCC.TColgp import *
from OCC.TColStd import *
from OCC.Precision import *
PI = 3.141592653589793238 def dump_point(pnt: gp_Pnt):
print('\t(%s, %s, %s)' % pnt.Coord()) def main_basic():
# 1.1 基本对象
# (1) OCgp_Pnt类:创建三维空间上的一个几何点对象。
pt1 = gp_Pnt(113, 0, 0.05)
# print(pt1.Coord())
pt2 = gp_Pnt(1, 2, 2) # (2) OCTColgp_Array1OfPnt类:创建三维空间几何点的一维数组对象。
array1 = TColgp_Array1OfPnt(0, 1)
array1.SetValue(0, pt1)
array1.SetValue(1, pt2) # (3) OCTColgp_Array2OfPnt:二维点数组
Poles = TColgp_Array2OfPnt(1, 2, 1, 4)
Poles.SetValue(1, 1, gp_Pnt(0, 0, 0))
Poles.SetValue(1, 2, gp_Pnt(0, 10, 2))
Poles.SetValue(1, 3, gp_Pnt(0, 20, 10))
Poles.SetValue(1, 4, gp_Pnt(0, 30, 0))
Poles.SetValue(2, 1, gp_Pnt(10, 0, 5))
Poles.SetValue(2, 2, gp_Pnt(10, 10, 3))
Poles.SetValue(2, 3, gp_Pnt(10, 20, 20))
Poles.SetValue(2, 4, gp_Pnt(10, 30, 0)) # (4) OCTColStd_Array1OfReal:一维Double数组
# (5) OCTColStd_Array1OfInteger:一维Integer数组
UKnots = TColStd_Array1OfReal(1, 2)
UKnots.SetValue(1, 0)
UKnots.SetValue(2, 1) # (13) OCgp_Mat:矩阵对象
rot = gp_Mat(1, 0, 0, 0, 0.5, 0, 0, 0, 1.5) def main():
aPoint = gp_Pnt(0, 0, 0)
print('平移前:')
dump_point(aPoint) aPoint.Translate(gp_Pnt(2, 2, 3), gp_Pnt(10, 10, 0))
print('平移后:')
dump_point(aPoint) # Roate 45 degree about Z axis.
# Positive angle value will be rotated counterclockwise.
aPoint.Rotate(gp_OZ(), PI/4);
print('绕Z轴旋转45度后:')
dump_point(aPoint) # 2.1 Test Package Precision.
if (aPoint.X() < precision_Confusion() and aPoint.X() > -precision_Confusion()):
print("\t点 X 值:", aPoint.X())
print("\tPrecision::Confusion() 值:", precision_Confusion()) aPoint.Rotate(gp_OZ(), PI/4);
print('再绕Z轴旋转45度后:')
dump_point(aPoint)
if (aPoint.X() + 8 < precision_Confusion() and aPoint.X() + 8 > -precision_Confusion()):
print("\t点 X 值:", aPoint.X())
print("\tPrecision::Confusion() 值:", precision_Confusion()) aPoint.Mirror(gp_OY())
print('相对Y轴镜像后:')
dump_point(aPoint) aPoint.Mirror(gp_XOY())
print('相对XOY平面镜像后:')
dump_point(aPoint) aPoint.SetCoord(1, 2, 1)
print('缩放前:')
dump_point(aPoint) scale_center_point = gp_Pnt(1, 2, 2)
aPoint.Scale(gp_Pnt(1, 2, 2), 2)
print('相对点%s缩放后:' % (scale_center_point.Coord(), ))
dump_point(aPoint) if __name__ == '__main__':
main()