測试hadoop版本号:2.4 

Map端聚合的应用场景:当我们仅仅关心全部数据中的部分数据时,而且数据能够放入内存中。

使用的优点:能够大大减小网络数据的传输量,提高效率;

一般编程思路:在Mapper的map函数中读入全部数据,然后加入到一个List(队列)中。然后在cleanup函数中对list进行处理。输出我们关系的少量数据。

实例:

在map函数中使用空格分隔每行数据。然后把每一个单词加入到一个堆栈中,在cleanup函数中输出堆栈中单词次数比較多的单词以及次数。

package fz.inmap.aggregation;

import java.io.IOException;
import java.util.ArrayList;
import java.util.PriorityQueue; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; public class InMapArrgegationDriver extends Configured implements Tool{
public static Logger log = LoggerFactory.getLogger(InMapArrgegationDriver.class);
/**
* @throws Exception
*
*/
public static void main(String[] args) throws Exception {
ToolRunner.run(new Configuration(), new InMapArrgegationDriver(),args);
} @Override
public int run(String[] arg0) throws Exception {
if(arg0.length!=3){
System.err.println("Usage:\nfz.inmap.aggregation.InMapArrgegationDriver <in> <out> <maxNum>");
return -1;
}
Configuration conf = getConf(); // System.out.println(conf.get("fs.defaultFS"));
Path in = new Path(arg0[0]);
Path out= new Path(arg0[1]);
out.getFileSystem(conf).delete(out, true);
conf.set("maxResult", arg0[2]);
Job job = Job.getInstance(conf,"in map arrgegation job");
job.setJarByClass(getClass()); job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class); job.setMapperClass(InMapMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// job.setOutputKeyClass(LongWritable.class);
// job.setOutputValueClass(VectorWritable.class);
job.setNumReduceTasks(0);
// System.out.println(job.getConfiguration().get("mapreduce.job.reduces"));
// System.out.println(conf.get("mapreduce.job.reduces"));
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out); return job.waitForCompletion(true)?0:-1;
} protected static class InMapMapper extends Mapper<LongWritable,Text,Text,IntWritable>{
private ArrayList<Word> words = new ArrayList<Word>();
private PriorityQueue<Word> queue;
private int maxResult; protected void setup(Context cxt){
maxResult = cxt.getConfiguration().getInt("maxResult", 10);
} protected void map(LongWritable key, Text value,Context cxt){
String [] line = value.toString().split(" "); // use blank to split
for(String word:line){
Word curr = new Word(word,1);
if(words.contains(curr)){
// increase the exists word's frequency
for(Word w:words){
if(w.equals(curr)){
w.frequency++;
break;
}
}
}else{
words.add(curr);
}
}
}
protected void cleanup(Context cxt) throws InterruptedException,IOException{
Text outputKey = new Text();
IntWritable outputValue = new IntWritable(); queue = new PriorityQueue<Word>(words.size());
queue.addAll(words);
for(int i=0;i< maxResult;i++){
Word tail = queue.poll();
if(tail!=null){
outputKey.set(tail.value);
outputValue.set(tail.frequency);
log.info("key is {},value is {}", outputKey,outputValue);
cxt.write(outputKey, outputValue); }
}
}
} }

使用到的Word类

package fz.inmap.aggregation;

public class Word implements Comparable<Word>{

	public String value;
public int frequency; public Word(String value,int frequency){
this.value=value;
this.frequency=frequency;
}
@Override
public int compareTo(Word o) {
return o.frequency-this.frequency;
}
@Override
public boolean equals(Object obj){
if(obj instanceof Word){
return value.equalsIgnoreCase(((Word)obj).value);
}else{
return false;
}
}
}

查看输出结果,能够看日志(因为在程序中输出了日志,所以在日志中也能够查看到);

hadoop编程小技巧(1)---map端聚合-LMLPHP

或者查看输出结果:

hadoop编程小技巧(1)---map端聚合-LMLPHP

总结:使用map端聚合,尽管能够大大减小网络传输数据量。提高效率,可是我们在应用的时候还是须要考虑实际的应用环境。比方。假设使用上面的算法来计算最大单词频率的前10个,然后还是使用上面的代码。就会有问题。

每一个mapper会处理并输出自己的单词词频最大的10个单词,并没有考虑到全部数据。这样在reducer端整合的时候就会可能会忽略部分数据,造成终于结果的错误。

分享,成长,快乐

转载请注明blog地址:http://blog.csdn.net/fansy1990

05-12 08:43