ScheduledThreadPoolExecutor

ScheduledThreadPoolExecutor

java提供了方便的定时器功能,代码示例:

public class ScheduledThreadPool_Test {
static class Command implements Runnable {
@Override
public void run() {
System.out.println("zhang");
}
} public static void main(String[] args) throws IOException {
ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
pool.scheduleWithFixedDelay(new Command(), 1000, 5000, TimeUnit.MILLISECONDS);
System.in.read();
}
}

接下来分析ScheduledThreadPoolExecutor:

// 省略其他代码
public class Executors {
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
} public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor implements ScheduledExecutorService { public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
new DelayedWorkQueue());
} public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
long initialDelay,
long delay,
TimeUnit unit) {
if (command == null || unit == null)
throw new NullPointerException();
if (delay <= 0)
throw new IllegalArgumentException();
ScheduledFutureTask<Void> sft =
new ScheduledFutureTask<Void>(command,
null,
triggerTime(initialDelay, unit),
unit.toNanos(-delay));
RunnableScheduledFuture<Void> t = decorateTask(command, sft);
sft.outerTask = t;
//把任务添加到队列中,创建工作线程
delayedExecute(t);
return t;
}
}

调用scheduleWithFixedDelay方法,把任务添加到DelayedWorkQueue,并启动工作线程。

private void delayedExecute(RunnableScheduledFuture<?> task) {
if (isShutdown())
reject(task);
else {
//把任务添加到队列
super.getQueue().add(task);
if (isShutdown() &&
!canRunInCurrentRunState(task.isPeriodic()) &&
remove(task))
task.cancel(false);
else
ensurePrestart(); // 创建线程
}
}

从队列中取任务的调用栈:

ScheduledThreadPoolExecutor-LMLPHP

任务在执行的时候,会新建一个任务,放入队列中,这样就实现了定时任务的功能。

ScheduledThreadPoolExecutor-LMLPHP

从上面能看出:定时的功能主要是由DelayedWorkQueue和ScheduledFutureTask保证的。

DelayedWorkQueue的底层数据结构是由数组实现的堆(堆是一棵完全二叉树,以小顶堆为例,parent节点值小于左右孩子节点的值):

// 省略其他代码
static class DelayedWorkQueue extends AbstractQueue<Runnable>
implements BlockingQueue<Runnable> {
private static final int INITIAL_CAPACITY = 16;
private RunnableScheduledFuture[] queue =
new RunnableScheduledFuture[INITIAL_CAPACITY];
private final ReentrantLock lock = new ReentrantLock();
private int size = 0;
private Thread leader = null;
private final Condition available = lock.newCondition(); private void siftUp(int k, RunnableScheduledFuture key) {
while (k > 0) {
int parent = (k - 1) >>> 1;
RunnableScheduledFuture e = queue[parent];
if (key.compareTo(e) >= 0)
break;
queue[k] = e;
setIndex(e, k);
k = parent;
}
queue[k] = key;
setIndex(key, k);
} private void siftDown(int k, RunnableScheduledFuture key) {
int half = size >>> 1;
while (k < half) {
int child = (k << 1) + 1;
RunnableScheduledFuture c = queue[child];
int right = child + 1;
if (right < size && c.compareTo(queue[right]) > 0)
c = queue[child = right];
if (key.compareTo(c) <= 0)
break;
queue[k] = c;
setIndex(c, k);
k = child;
}
queue[k] = key;
setIndex(key, k);
} public boolean offer(Runnable x) {
if (x == null)
throw new NullPointerException();
RunnableScheduledFuture e = (RunnableScheduledFuture)x;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = size;
if (i >= queue.length)
grow();
size = i + 1;
if (i == 0) {
queue[0] = e;
setIndex(e, 0);
} else {
siftUp(i, e);
}
if (queue[0] == e) {
leader = null;
available.signal();
}
} finally {
lock.unlock();
}
return true;
} public RunnableScheduledFuture take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
RunnableScheduledFuture first = queue[0];
if (first == null)
available.await();
else {
long delay = first.getDelay(TimeUnit.NANOSECONDS);
if (delay <= 0)
return finishPoll(first);
else if (leader != null)
available.await();
else {
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
available.awaitNanos(delay);
} finally {
if (leader == thisThread)
leader = null;
}
}
}
}
} finally {
if (leader == null && queue[0] != null)
available.signal();
lock.unlock();
}
}
}

ScheduledFutureTask是周期任务:

private class ScheduledFutureTask<V> extends FutureTask<V> implements RunnableScheduledFuture<V> {
//当2个task的时间相同时,用来比较task优先级
private final long sequenceNumber;
//任务执行时间 nanoTime units
private long time;
/**
* Period in nanoseconds for repeating tasks. A positive
* value indicates fixed-rate execution. A negative value
* indicates fixed-delay execution. A value of 0 indicates a
* non-repeating task.
*/
private final long period;
/** The actual task to be re-enqueued by reExecutePeriodic */
RunnableScheduledFuture<V> outerTask = this;
// DelayedWorkQueue中堆的下标
int heapIndex; ScheduledFutureTask(Runnable r, V result, long ns, long period) {
super(r, result);
this.time = ns;
this.period = period;
this.sequenceNumber = sequencer.getAndIncrement();
} // 堆在siftUp和siftDown时需要比较大小
public int compareTo(Delayed other) {
if (other == this) // compare zero ONLY if same object
return 0;
if (other instanceof ScheduledFutureTask) {
ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
long diff = time - x.time;
if (diff < 0)
return -1;
else if (diff > 0)
return 1;
else if (sequenceNumber < x.sequenceNumber)
return -1;
else
return 1;
}
long d = (getDelay(TimeUnit.NANOSECONDS) -
other.getDelay(TimeUnit.NANOSECONDS));
return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
} // 设置周期任务的下一次执行时间
private void setNextRunTime() {
long p = period;
if (p > 0)
time += p;
else
time = triggerTime(-p);
} public boolean cancel(boolean mayInterruptIfRunning) {
boolean cancelled = super.cancel(mayInterruptIfRunning);
if (cancelled && removeOnCancel && heapIndex >= 0)
remove(this);
return cancelled;
} /**
* Overrides FutureTask version so as to reset/requeue if periodic.
*/
public void run() {
boolean periodic = isPeriodic();
if (!canRunInCurrentRunState(periodic))
cancel(false);
else if (!periodic)
ScheduledFutureTask.super.run();
else if (ScheduledFutureTask.super.runAndReset()) {
//设置下次任务的时间
setNextRunTime();
reExecutePeriodic(outerTask);
}
}
} // ScheduledThreadPoolExecutor
void reExecutePeriodic(RunnableScheduledFuture<?> task) {
if (canRunInCurrentRunState(true)) {
super.getQueue().add(task);
if (!canRunInCurrentRunState(true) && remove(task))
task.cancel(false);
else
ensurePrestart();
}
} // ThreadPoolExecutor
void ensurePrestart() {
int wc = workerCountOf(ctl.get());
if (wc < corePoolSize)
addWorker(null, true);
else if (wc == 0)
addWorker(null, false);
}
05-11 23:01