良心赛,虽然我迟了半小时233333。

比赛链接:#869

呃,CF的比赛都是有背景的……上次是《哈利波特》,这次是《物语》……

【A】巧妙的替换

题意:

Karen发现了石头剪刀布的决定性规律,看透了这个游戏的本质,使得石头剪刀布再无奥秘可言。

但是他的哥哥,Koyomi发明了一个新游戏:

他们先选定一个数\(n\),然后选出\(2n\)个互不相同的数,为\(x_{1},x_{2},\cdots,x_{n}\)和\(y_{1},y_{2},\cdots,y_{n}\)。

接下来他们数出无序数对\((i,j)\)的数量,使得\((i,j)\)满足\(x_{a}\hat{\;}y_{b}\)等于这\(2n\)个数中的某一个。

其中\(\hat{\;}\)符号代表按位异或。

如果这种数对的数量是偶数,则Karen赢,否则Koyomi赢。

判断谁会赢。

输入:

第一行一个数\(n,(1\leqslant n\leqslant2000)\)。

接下来一行n个数,表示\(x_{1},x_{2},\cdots,x_{n}(1\leq x_{i}\leq2\cdot10^6)\)。

接下来一行n个数,表示\(y_{1},y_{2},\cdots,y_{n}(1\leq y_{i}\leq2\cdot10^6)\)。

输出:

一行一个字符串"Karen"或"Koyomi",表示谁会赢,注意大小写。

题解:

把\(2n\)个数有没有出现过记下来,然后\(O(n^2)\)乱搞。

唯一的坑点是如\(2000000\hat{\;}97151=2097151\),大于2000000,所以数组要防止越界。

#include<cstdio>
int n,a[],y[],ans;
bool vis[];
int main(){
scanf("%d",&n);
for(int i=;i<=n;++i) scanf("%d",a+i), vis[a[i]]=;
for(int i=;i<=n;++i) scanf("%d",y+i), vis[y[i]]=;
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
if(vis[a[i]^y[j]]) ++ans;
if(ans&) puts("Koyomi");
else puts("Karen");
}

【B】不朽的神话

题意:

堆积药草和焚香,而后从其先祖的尘埃中重生,“凤凰涅槃”的故事被很多人所熟知。

凤凰有很长的生命周期,它每隔\(a!\)年就会轮回转世,这里\(a!\)表示\(a\)的阶乘。

Koyomi不关心这些,在他和更多的奇物搞的一团糟之前,他想知道在\(b!\)年中,凤凰会重生多少次,即\(\frac{b!}{a!}\)。

当\(a\leq b\)时,\(\frac{b!}{a!}\)总是整数。

答案可能会很大,所以Koyomi想知道答案的最后一位(十进制下)。

输入:

第一行,两个整数\(a,b(0\leq a\leq b\leq 10^{18})\)。

输出:

一个数字,表示答案的最后一位。

题解:

当\(b-a\geq5\)时,输出0。

#include<cstdio>
int main(){
long long a,b;
scanf("%I64d%I64d",&a,&b);
if(b-a>=) puts("");
else{
int last=;
for(long long c=a+;c<=b;++c) last=last*(c%);
printf("%d",last%);
}
return ;
}

【C】有趣的迷恋

题意:

齐心协力,我们可以以超乎想象的速度到达任何地方!现在,Fire Sisters——Karen和Tsukihi正在前往一个她们从未到达的地方——水中的小岛!

有三种不同类型的小岛,方便地,各自涂上了红,蓝,紫三色。每种颜色的小岛各自有\(a,b,c\)个。

这些小岛之间初始时互相分离。可以在小岛之间架桥,两个小岛间最多架一座桥。

但要满足:任意两个不同的颜色相同的小岛的最短距离要大于等于3(桥的长度为1)。

请你计算出不同的架桥方案有多少种。答案对998244353取模。

输入:

三个非负整数,\(a,b,c(0\leq a,b,c\leq5000)\)。

输出:

一个数,不同的架桥方案数对998244353取模的结果。

题解:

观察到一个颜色的小岛不能连向自己颜色的,也不能向同一颜色的小岛连去两条边。

也就是说,一个小岛能向另两种颜色的小岛连边,一种颜色最多连一条。

设\(f[i][j]\)表示两种颜色的小岛各有\(a,b\)个,它们之间互相连边,并满足条件的种数。

则答案等于\(f[a][b]\cdot f[b][c]\cdot f[c][a]\)。

而\(f[i][j]=f[i-1][j]+j\cdot f[i-1][j-1]\),这一点可以简单地推出。

我们使用动态规划算法求出所有可能的\(f[i][j]\)即可。

#include<cstdio>
const int Mod=;
long long f[][];
int main(){
for(int i=;i<=;++i) f[][i]=f[i][]=;
for(int i=;i<=;++i) for(int j=;j<=;++j) f[i][j]=(f[i-][j]+j*f[i-][j-])%Mod;
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
printf("%I64d",f[a][b]*f[b][c]%Mod*f[c][a]%Mod);
return ;
}

【D】

不会

【E】

二维树状数组可做。

05-11 23:01